
Banner: An Image Sensor Reconfiguration Framework
for Seamless Resolution-based Tradeoffs

Jinhan Hu, Alexander Shearer, Saranya Rajagopalan, Robert LiKamWa
Arizona State University

Tempe, Arizona
jinhanhu,acshear1,srajag25,likamwa@asu.edu

ABSTRACT
Mobile vision systems would benefit from the ability to situation-
ally sacrifice image resolution to save system energy when imaging
detail is unnecessary. Unfortunately, any change in sensor resolu-
tion leads to a substantial pause in frame delivery – as much as
280ms. Frame delivery is bottlenecked by a sequence of reconfig-
uration procedures and memory management in current operat-
ing systems before it resumes at the new resolution. This latency
from reconfiguration impedes the adoption of otherwise beneficial
resolution-energy tradeoff mechanisms.

We propose Banner as a media framework that provides a rapid
sensor resolution reconfiguration service as a modification to com-
mon media frameworks, e.g., V4L2. Banner completely eliminates
the frame-to-frame reconfiguration latency (226ms to 33ms), i.e.,
removing the frame drop during sensor resolution reconfiguration.
Banner also halves the end-to-end resolution reconfiguration la-
tency (226ms to 105ms). This enables a more than 49% reduction
of system power consumption by allowing continuous vision appli-
cations to reconfigure the sensor resolution to 480p compared with
downsampling 1080p↓480p, as measured in a cloud-based offload-
ing workload running on a Jetson TX2 board. As a result, Banner
unlocks unprecedented capabilities for mobile vision applications
to dynamically reconfigure sensor resolutions to balance the energy
efficiency and task accuracy tradeoff.

CCS CONCEPTS
• Computer systems organization → Sensors and actuators.

KEYWORDS
Operating systems; Energy efficiency; Reconfiguration; Resolution-
based tradeoff; Efficient visual computing; Device drivers
ACM Reference Format:
Jinhan Hu, Alexander Shearer, Saranya Rajagopalan, Robert LiKamWa.
2019. Banner: An Image Sensor Reconfiguration Framework for Seam-
less Resolution-based Tradeoffs. In The 17th Annual International Con-
ference on Mobile Systems, Applications, and Services (MobiSys ’19), June
17–21, 2019, Seoul, Republic of Korea. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3307334.3326092

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6661-8/19/06. . . $15.00
https://doi.org/10.1145/3307334.3326092

Resolution Request Resolution Request

Frame-to-frame Latency

(a) In legacy systems, any change in sensor resolution
leads to a substantial pause in frame delivery.

Resolution Request Resolution Request

(b) Banner completely removes frame-to-frame latency
for reconfiguring sensor resolution.

Figure 1: Compared with current systems, Banner enables
rapid and seamless sensor resolution reconfiguration.

1 INTRODUCTION
The high energy consumption of visual sensing continues to impede
the future of mobile vision in which devices will continuously com-
pute visual information from sensory data, e.g,. for visual personal
assistants or for augmented reality (AR). While vision algorithms
continue to improve in task accuracy and speed, mobile and wear-
able vision systems fail to achieve sufficient battery life when vision
tasks are continuously running. Continuous video capture drains
the battery of Google Glass in 30 minutes [4].

It is well known that a common culprit is the energy-expensive
traffic of image data [20, 22]. Transferring high resolutions at high
frame rates draws substantial power consumption from the analog-
digital conversion, the sensor interface transactions, and the mem-
ory usage. Simply capturing 1080p frames at 30 frames per second
consumes more than 2.4W of system power measured on a MOTO
Z smartphone. However, capturing and displaying 480p frames only
consumes 1.3W of system power.

Image resolution can create an interesting tradeoff for visual
tasks: low resolution promotes low energy consumption, while
high resolution promotes high imaging fidelity for high visual task
accuracy. For example, as we explore with our AR marker-based
pose estimation case study (§1.1), lower resolutions suffice when
an AR marker is close, but high resolutions are needed when the
AR marker is far away or small. This tradeoff has been explored
by several visual computing system works including marker pose
estimation, object detection, and face recognition [5, 11, 12, 15,
22, 26, 31, 33, 39]. We too advocate that mobile vision systems

Session 5: Sense and See MobiSys ’19, June 17–21, 2019, Seoul, Korea

236

https://doi.org/10.1145/3307334.3326092
https://doi.org/10.1145/3307334.3326092

should be able to benefit from the ability to situationally sacrifice
image resolution to save system energy when imaging detail is
unnecessary.

Unfortunately, any change in sensor resolution leads to a
substantial pause in frame delivery. This is illustrated in Fig-
ure 1a. We measure that reconfiguring sensor resolution in the An-
droid OS prevents the application from receiving frames for about
267ms, the equivalent of dropping 9 frames (working at 30 FPS)
from vision processing pipelines [15]. Consequently, computer vi-
sion applications don’t change resolutions at runtime, despite the
significant energy savings at lower resolutions. For example, Aug-
mented Reality applications such as "Augment" and "UnifiedAR"
constantly work at 1080p, drawing 2.7W of system power.

Thus, in this paper, we target image sensor resolution reconfig-
uration latency as a chief impediment of energy-efficient visual
systems. Referring to [15], we break the resolution reconfiguration
latency into two types of latency. End-to-end reconfiguration latency
is the time between an application’s request to change resolution
and the time the application receives a frame of the new resolution.
Frame-to-frame latency is the interval between two frames provided
to the application in which the latter frame is configured at the new
resolution.

The problem of long resolution reconfiguration latency is com-
mon across all mobile platforms, as we measured on different de-
vices. In the Android OS, there is a 400ms end-to-end reconfigura-
tion latency [15]. In the Linux V4L2 media framework, we observe a
260ms end-to-end reconfiguration latency. End-to-end reconfigura-
tion latency in iOS also takes around 400ms, as measured by times-
tamping a simple video capturing application we built in Xcode [16].
Similarly, end-to-end reconfiguration latency in Gstreamer with
NVIDIA Libargus occupies more than 300ms.

Almost all of the resolution reconfiguration latency originates
from the operating system; at the sensor level, hardware register
values are effective by the next frame [2, 27, 28, 34, 38].We proposed
several alternatives at the Android framework and HAL level for
discussion in our pervious work [15]. However, from deeper under-
standing of the Android OS, we find that the problem stems from
the lower level system, i.e., media frameworks in the kernel. The
underlying issue is that the kernel’s media frameworks require user
space applications to frequently invoke a sequence of expensive
system calls in order to request a new sensor resolution.

Our study of the media frameworks exposes several key insights.
First, the current streaming pipeline needs to be preserved during
resolution reconfiguration. Frames already captured at the previous
resolution are useful and need to be read out. Second, resolution
change should also be immediately effective in the next capture.
This capture will be available after moving through the pipeline.
Third, synchronizing the resolution of frame buffers across the
system stack is expensive and should be avoided. As it stands, media
frameworks require the application to initiate expensive system
calls to repeatedly allocate memory for the frame buffers.

To exploit these key insights, we design Banner: a system solu-
tion for rapid sensor resolution reconfiguration. Banner revolves
around two techniques. Parallel reconfiguration maintains video
capture streams and schedules sensor reconfiguration in parallel
while the application is processing the frame. Format-oblivious mem-
ory management removes repeated memory allocation from the

reconfiguration procedure, avoiding expensive system calls initi-
ated by the application. Using these techniques, Banner completely
eliminates frame-to-frame latency, as illustrated in Figure 1b, al-
lowing for seamless multi-resolution frame capture. Banner also
achieves the minimum possible end-to-end reconfiguration latency,
fundamentally bounded by the pipeline latency of frame readout
(usually larger than two frames). In extreme cases, if the applica-
tion requests only one buffer to be allocated (not allowed for video
streaming) or if the system allows frames already captured to drop,
the end-to-end reconfiguration latency can further be reduced in
Banner.

Because of the unavailability of open-source camera drivers and
camera host drivers for Android devices, our Banner prototype is
implemented in the Linux kernel. However, we propose several
suggestions in §6 to help developers who want to integrate Ban-
ner to the Android OS. We evaluate Banner’s efficacy within the
Linux V4L2 framework by running three workloads on a Jetson TX2
board with the Ubuntu system, including display-only, cloud-based
offloading, and marker-based pose estimation. Our evaluation con-
firms that Banner completely eliminates frame-to-frame latency,
even for workloads operating at 30 FPS. Furthermore, Banner cre-
ates a 54% reduction in end-to-end reconfiguration latency (from
226ms to 105ms).

The reduction in reconfiguration latency results in a 49% power
consumption reduction by reconfiguring the resolution from 1080p
to 480p compared with computationally downsampling 1080p↓480p,
measured on a Jetson TX2 board. While we implement and evaluate
our design choices based on Linux V4L2, they can be generalized
to other media frameworks, such as Gstreamer (which can capture
videos from V4L2 devices), and Linux-based operating systems,
including the Android OS.

Our contributions in this paper are as follows:

• We propose design strategies for media frameworks to re-
duce sensor resolution reconfiguration latency.

• We introduce Banner as a rapid sensor reconfiguration frame-
work that eliminates frame-to-frame latency and halves end-
to-end reconfiguration latency.

• We evaluate the effectiveness of reconfiguring sensor reso-
lution dynamically to improve power efficiency for vision
tasks, comparing with downsampling.

Altogether, Banner will unlock new classes of vision algorithms
that can balance the resolution-based energy efficiency and accu-
racy tradeoffs to maximize performance in a variety of continous
mobile vision tasks.

The rest of the paper is structured as follows. §1.1 shows the
motivation for reconfiguring resolution. §2 explains resolution re-
configuration procedure in common media frameworks. §3 elabo-
rates the Banner design for tackling the inefficient sensor resolution
reconfiguration problem. §4 introduces the Banner implementation
in the Linux kernel. §5 demonstrates the effectiveness of Banner
for improving energy efficiency in three workloads. §6 discusses
the limitations of Banner and our future work. §7 compares Banner
to related works.

Session 5: Sense and See MobiSys ’19, June 17–21, 2019, Seoul, Korea

237

20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0
Distance between the marker and the camera(cm)

0

2

4

6

8

10

12

14

16

T
ra

ns
la

ti
on

al
er

ro
r(

cm
)

960p

720p

480p

960p↓480p

(a) Low resolution maintains a low transla-
tion error when marker is close to camera.

20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0
Distance between the marker and the camera(cm)

0

20

40

60

80

R
ot

at
io

na
l

er
ro

r(
de

gr
ee

s)

960p

720p

480p

960p↓480p

(b) Low resolutionmaintains a low rotation
error when marker is close to camera.

960p 720p 480p 960p↓480p
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

E
ne

rg
y

p
er

fr
am

e(
J)

(c) System energy consumption at 480p is 70%
and 50% less than 960p and downsampling.

Figure 2: In our marker-based pose estimation case study, task accuracy (translation and rotation error) can be maintained
and system energy consumption (energy per frame) can be reduced by 70% if sensor resolution is reconfigured from 960p to
480p when the distance between the marker and the camera is reduced from 35 cm to 20 cm.

1.1 Case Study for Resolution-driven Tradeoffs
To motivate our work, we present a case study around a marker-
based pose estimation application running on a Moto Z mobile
phone. Marker-based pose estimation forms the foundation for
many AR frameworks, including Vuforia [37], ARCore [9], and
ARKit [3] for image-based tracking. Our exploration of marker-
based pose estimation allows us to analyze the resolution-based
energy and accuracy tradeoff in mobile vision tasks. The pose es-
timation application uses an ORB feature detector, Flann-based
matcher, and Perspective-n-Point algorithm to detect keypoints
in an image frame, match keypoints with model descriptors, and
estimate the position of the virtual camera against the physical
environment respectively on a frame-to-frame basis.

The energy efficiency is characterized by the power traces ac-
quired from the Trepn Profiler and the number of frames processed
per second measured at different resolutions. To evaluate task ac-
curacy, we use the MSE rotation and translation vector errors com-
pared with the "ground truth" acquired from the highest resolution.
Prior work [15] has already demonstrated that based on the distance
and viewing angle between the camera and the marker, sensor res-
olution needs to be actively reconfigured to balance efficiency and
performance. Similarly, results in Figure 2 show that, by reconfig-
uring the sensor from 960p to 480p while the sensor is approaching
the marker from 35 cm to 20 cm, the task accuracy can be main-
tained (Figure 2a and 2b) and a 70% energy consumption reduction
can be achieved (Figure 2c).

As an alternative to changing sensor resolution, the system can
computationally downsample the frames to reduce the computa-
tional workload of the vision algorithm. However, results in Figure
2c show that, capturing at 480p costs almost 50% less energy than
computational downsampling 960p↓480p, not to mention the higher
task accuracy.

In conclusion, physically reconfiguring the sensor resolution
is the most viable way to balance the resolution-based energy ef-
ficiency and task accuracy tradeoff for continuous mobile vision
tasks. However, sensor resolution reconfiguration is limited by a
substantial latency.

2 UNDERSTANDING THE RESOLUTION
RECONFIGURATION LATENCY

In this section, we elaborate on how user applications request differ-
ent sensor resolutions using the Video4Linux2 (V4L2) framework.
The V4L2 framework provides APIs for applications to manipulate
cameras on Linux. V4L2 is commonly used by almost all Ubuntu
desktops and Android devices built upon the Linux system.

In V4L2, image sensor resolution reconfiguration follows a strict
sequential procedure. This sequential procedure leads to a sub-
stantial amount of end-to-end and frame-to-frame reconfigura-
tion latency, which impedes the ability for applications to utilize
resolution-based energy tradeoffs. Through this section, we explore
the V4L2 implementation on an NVIDIA Jetson TX2 board with an
ON Semiconductor AR0330 sensor.

V4L2 system architecture: In the V4L2 framework, there are
four main driver modules in the kernel that collaborate to provide
camera services. The V4L2 driver is responsible for exposing cam-
era control operations to the user application, such as opening the
V4L2 camera or setting its exposure or brightness. The camera
host driver, which implements the V4L2 driver and V4L2 camera
interfaces, is responsible for ensuring the proper input and output
format for frames flowing between the camera and the memory, as
well as starting and stopping the reception of camera frame data.
The video buffer driver, which is a helper to the V4L2 driver, is
responsible for allocating and deallocating buffers with proper sizes
for corresponding resolution requests. The camera driver, which
communicates with the camera hardware, is responsible for setting
up the camera for the requested output.

Before the application can start streaming with the V4L2 cam-
era devices, it needs to request at least a pair of buffers to store
and process the captured frames. The buffer ownership transfer
is realized by dequeuing buffers ioctl(VIDIOC_DQBUF) and queu-
ing buffers ioctl(VIDIOC_QBUF) between the application and the
camera host driver. The application dequeues a buffer when the
capture is completed by the image sensor. The application queues
a buffer back for sensor capture after the processing on it is done
– the application relinquishes control of the buffer. Depending on
the needs of the imaging pipeline, the application can require more

Session 5: Sense and See MobiSys ’19, June 17–21, 2019, Seoul, Korea

238

Reconfiguration operation Average execution time
Stop streaming 75ms
Initialize device 31ms
Start streaming 72ms

Table 1: Expensive operations and their average cost in cur-
rent sensor resolution reconfiguration procedure measured
on the TX2/AR0330 setup.

buffers, such that multiple pipeline stages can simultaneously ad-
dress buffers. All buffers ready for applications to read are stored
in the camera host driver. Typically, only one buffer is transferred
to the application at a time.

2.1 Reconfiguration is a sequential process
Once the video stream has been started, V4L2 requires the applica-
tion to reconfigure sensor resolution in a sequence of steps. Notably,
each subsequent step in the sequence invokes a different subsys-
tem, creating synchronization issues. We illustrate this sequential
procedure in Figure 4a and detail it here.

(1) The application initializes a resolution request while the
camera is capturing.

(2) The application calls V4L2 ioctl(VIDIOC_STREAMOFF), which
is implemented in the camera host driver and the camera
driver to turn off current working streams. This step takes
around 75ms.

(3) The application calls munmap(), which is implemented in the
video buffer driver to deallocate the memory. This step takes
less than 1ms.

(4) The application calls V4L2 ioctl(VIDIOC_S_FMT), which
is implemented in the camera host driver and the camera
driver to set the sensor’s output format.

(5) The application calls V4L2 ioctl(VIDIOC_REQBUFS) and
mmap(), which are implemented in the video buffer driver
to request, allocate, and map new sets of buffers. Together
with step 4, initializing the device takes around 31ms.

(6) The application finally calls V4L2 ioctl(VIDIOC_STREAMON),
which is implemented in the camera host driver and the cam-
era driver to set the input and output format of the channel
and then start the video stream. This step takes around 72ms.

(7) The first frame at new resolution is returned after a pipeline
latency, typically several frame times later, depending on the
pipeline depth.

Table 1 shows the latency costs of several expensive operations
in the sensor resolution reconfiguration procedure measured on
the TX2/AR0330 setup.

2.2 Resolution Synchronization Creates
Latency

Throughout the reconfiguration process, there are several strict
resolution synchronizations among the camera host driver, the
video buffer driver, and the camera driver, each of which introduces
a substantial reconfiguration latency.

First, resolution synchronization between the video buffer driver
and the camera driver is established by requesting buffer size based

on specific sensor format. This synchronization ensures that there
will be enough frame buffer space to hold complete frames. If the
syscall ioctl(VIDIOC_S_FMT) is called to set the sensor resolution,
ioctl(VIDIOC_REQBUFS) and mmap() also need to be called for a
new set of buffers.

Second, resolution synchronization between camera host driver
and camera driver is established by updating the camera driver host
state based on the camera’s format. If ioctl(VIDIOC_S_FMT) is
called to set the sensor resolution, the input state of camera host
driver also needs to be reconfigured. This synchronization ensures
that the video input module on board has the proper format to
receive frames flowing from the camera.

Third, the previous two synchronizations force a resolution syn-
chronization between the camera host driver and video buffer driver.
That is, if the system requires a new set of buffers, the output state
of camera host driver also needs to be reconfigured.

By synchronizing resolution among these drivers, the camera ser-
vice ensures correct capture, delivery, and render of image frames.
But this strong resolution coupling among drivers creates bottle-
necks; if an application requests a new resolution, the whole config-
uration procedure described above in §2.1 will be invoked, creating
a substantial latency.

2.3 Reconfiguration Latency Drops Frames
As shown in Figure 7, the overall end-to-end reconfiguration and
the frame-to-frame latency are both about 230ms in the legacy
V4L2 framework, as we measured on the TX2/AR0330 system. For a
camera running at 30 FPS, a 230ms frame-to-frame reconfiguration
latency is equivalent to the system dropping 8 camera frames. In
addition, the legacy V4L2 framework abandons all captured frames
that are stored in buffers once the application requests a new sensor
resolution. Thus, depending on how many buffers are requested
by the application (N), the number of frames dropped could be
N + 8. The number of requested buffers (N) must be larger than 2
(typically 3 or 4) [19].

We see resolution reconfiguration latency manifested on all de-
vices we tested. We measure that end-to-end resolution reconfig-
uration latency in Android and iOS devices both consume about
400ms. A fast sensor resolution reconfiguration solution needs to
be introduced to media frameworks so that frame-critical computer
vision applications on top of them can frequently reconfigure the
sensor resolution to improve energy efficiency.

2.4 Design Guidelines
We declare the following insights for inspiring the design of a rapid
and seamless sensor resolution reconfiguration system:

Preserve the pipeline of existing frames: Frames already cap-
tured and stored in the pipeline are still meaningful. The legacy
V4L2 framework abandons those frames to fulfill the new resolution
request immediately. On the contrary, the Android OS will issue the
new resolution request only after pipelined frames are processed
and delivered properly. For some visual tasks – including marker-
based pose estimation – every frame is critical to task performance
because of the potential negative influence on task accuracy and
user experience. The sensory data should be continuous, i.e., frame

Session 5: Sense and See MobiSys ’19, June 17–21, 2019, Seoul, Korea

239

Media framework

Host driver

Image
sensor

Video
buffer

Banner framework

Banner host driver

Image
sensor

Video
buffer

Figure 3: Banner helps the application reduce the number
of required system calls to reconfigure sensor resolution to
one ioctl(VIDIOC_RECONFIGURE) call, instead ofmultiple sys-
tems calls: mmap(), munmap(), ioctl(VIDIOC_STREAMON), and
ioctl(VIDIOC_STREAMOFF).

drop is unacceptable. The system should find a way to maintain
current streams while reconfiguring the sensor for new resolution.
Resolution change should be immediately effective in the
next capture: Sensor register changes can be effective in the next
capture, as is done for setting up different exposure time for con-
secutive capture requests in HDR mode [2, 34, 38]. Similarly, the
system should reconfigure related sensor registers immediately
and asynchronously once there is a new resolution request. This
would allow applications to expect and utilize the prompt resolution
change.
Minimize synchronization across the video system stack,while
ensuring correct sensory data:Resolution synchronizations among
different driver modules lead to repeated sequential reconfigura-
tions every time there is a new resolution request which causes
huge amount of latency. In addition, resolution synchronizations
trigger some expensive and redundant system calls initiated by the
application, including mmap(). As long as the application knows the
resolution of the frames it is processing and the sensor knows the
resolution for each frame it is capturing, the data will be correctly
delivered and interpreted.We argue that buffer size synchronization
between the sensor and the application is unnecessary. Memory
management can be oblivious to format.

3 DESIGN OF BANNER
Built on these derived design guidelines, we design Banner to ad-
dress the resolution reconfiguration latency problem in the legacy
V4L2 framework. Banner is a fast sensor resolution reconfiguration
framework that can provide frames continuously, even between two
frames at different resolutions. While we design Banner to interop-
erate with the V4L2 framework, the underlying concepts are generic
to all media frameworks. Compared to resolution reconfiguration
in today’s system, Banner halves the end-to-end reconfiguration
latency and completely removes the frame-to-frame reconfigura-
tion latency, i.e., no frame drops. As a result, Banner unlocks a
variety of continuous mobile vision applications to control their
image sensors for desired resolutions. This allows new potential to
balance energy efficiency and accuracy tradeoffs.

In particular, Banner employs two key techniques: parallel re-
configuration and format-oblivious memory management. Parallel

Open device

Set sensor
format

Request/map
buffers

Start
streaming

Process
image

Resolution
request?

Stop
streaming

Release
buffers

No

Yes

(a) Resolution reconfigura-
tion in legacy V4L2

Open device

Set sensor
format

Request/map
buffers

Start
streaming

Process
image

Resolution
request?

Set sensor
format

No

Yes

Process
image

2

1

(b) Resolution reconfigura-
tion in Banner

Figure 4: In Banner, most of the sequential procedures
are avoided for reconfiguring sensor resolution. (1) Banner
avoids repeated memory allocation; (2) Banner sets sensor
format in parallel with user application.

reconfiguration aims at reconfiguring the sensor while the appli-
cation is processing frames for the previous resolution such that
the reconfiguration latency is hidden. Format-oblivious memory
management aims at maintaining a single set of frame buffers –
regardless of resolution – to eliminate repeated invocation of ex-
pensive memory allocation system calls.

System Overview: Banner is a media framework that allows
applications to request sensor resolution reconfigurations with
seamless frame delivery. It exposes a system call to the application
and resides in the kernel as a camera host driver to interact with
the video buffer driver and the camera driver, as shown in Figure 3.
Banner minimizes the required number of system calls for vision
applications to reconfigure the sensor resolution.

Figure 4b depicts the rapid sensor resolution reconfiguration
procedure in our proposed Banner framework. When starting the
stream, the system sets up the sensor, the sensor host, and the buffer
with the highest supported resolution in a sequential procedure, as
it does with the V4L2 framework. However, after the application re-
quests a new resolution, Banner will not go through all steps in the
sequential procedure again. Instead, Banner maintains the stream
without reallocating buffers and then asynchronously reconfigures
the sensor in parallel through only one ioctl call from the appli-
cation. Frames at new resolution will be returned after reading out
N frames (determined by the number of buffers requested) already
captured with previous resolution. Resolution reconfiguration in
Banner is rapid and continuous, i.e., without any frame drop. The
procedure for stopping the capture and closing the camera follows
the same sequential procedure in V4L2 framework.

Session 5: Sense and See MobiSys ’19, June 17–21, 2019, Seoul, Korea

240

Capture Frame

User
Thread

Banner
Reconfiguration

Thread

Capture
Thread

Resolution Request

qbuf

Process Frame

Capture Frame

Execute sensor
reconfiguration

Process Frame

Capture Frame

Process Frame

𝑇"#$%&'() 𝑇"#$%&'()

𝑇*+,-%$𝑇.+,-%$ 𝑇*+,-%$

𝑇/(0$+&% 𝑇/(0$+&% 𝑇/(0$+&%

𝑇"#$%&'()

dqbuf dqbufqbuf qbuf dqbuf

Figure 5: Banner reconfigures sensor resolution in parallel with application processing frames in the reconfiguration timing
budget (a function of frame interval and capture time) such that reconfiguration latency can be hidden.

3.1 Parallel Reconfiguration
As we discussed in §2, resolution reconfiguration in the current
V4L2 framework follows a strict sequential procedure. This sequen-
tial reconfiguration procedure introduces both a substantial end-
to-end reconfiguration latency and a substantial frame-to-frame
reconfiguration latency. In Banner, sensor resolution reconfigura-
tion is completed in parallel while the application is processing
frames. By doing so, the frame-to-frame resolution reconfiguration
latency is fully hidden.

To achieve this, the parallel reconfiguration module is designed
based on three considerations. First, the sensor is not always busy;
there is an idle time between captures. Second, the reconfiguration
thread cannot be interrupted, otherwise the end-to-end latency will
be increased. Dequeuing a buffer signals that a capture is complete
and queuing a buffer signals the next capture. The system should
identify the right time to reconfigure sensor. Third, reconfiguration
itself takes time, due to camera driver implementations and camera
hardware limitations.

To resolve these considerations, thread-level concurrency can
address the first and second considerations, while a reconfiguration
timing budget can address the second and third considerations.
Altogether, Banner can schedule the right time to reconfigure the
sensor and trigger the next capture. The parallel reconfiguration
strategy is illustrated in Figure 5.

3.1.1 Thread-level concurrency. The crux of the parallel reconfigu-
ration is to utilize thread-level concurrency to reconfigure sensor
resolution. In the current V4L2 framework, in addition to a main
thread, there is a capture thread responsible for capturing frames.
This capture thread is frozen until it is woken up by the application
queueing a buffer for frame capture. The capture thread and the
main application thread process in parallel. Although the sensor is
busy capturing frames when the capture thread is awake, it is free
for reconfiguration while the capture thread is frozen. For Banner,
we design a reconfiguration thread that can work in parallel with the
application thread. This thread processes reconfiguration requests
while the application processes frames and the capture thread is
frozen. We choose to create a reconfiguration thread, considering

the latency penalty incurred by waking up the capture thread. Re-
configuration thread and the main thread are joined before they
wake up the capture thread for the next capture. Banner uses atomic
read/write to ensure thread safety.

3.1.2 Reconfiguration timing budget. The Banner reconfiguration
thread cannot reconfigure the sensor when the capture thread is
active. Therefore, a resolution reconfiguration timing budget needs
to be defined for the reconfiguration thread to work with. We define
resolution reconfiguration timing budget Tbudдet in Equation 1 as
a function of frame interval Tinterval and capture time Tcapture .
Tinterval – the interval between consecutive frame captures – is
defined by the application as the interval between two consecutive
ioctl(VIDIOC_QBUF) calls from the application. Tinterval is typi-
cally held stable to ensure good user experience. Tcapture varies
from frame to frame, influenced by the capture parameters such as
the exposure time and resolution.Tbudдet is equal to frame interval
Tinterval minus the required capture time Tcapture , i.e.,

Tbudдet = Tinterval −Tcapture (1)

It is important to ensure that sensor resolution reconfiguration
is finished in the reconfiguration timing budget such that the recon-
figuration thread is not interrupted by the wake up of the capture
thread. Otherwise, capture at the new resolution will be delayed
by another capture with the old resolution, which causes both
end-to-end and frame-to-frame reconfiguration latency to be un-
predictable.

In our implementation, we have observed that the reconfigura-
tion timing budget is long enough that the reconfiguration latency
can be completely hidden by the main application thread. That is,
the frame-to-frame latency is eliminated. Seen from the application
side, the frame rate is stable in Banner even between two frames
at different resolutions. Based on our evaluation, we can maintain
more than 30 FPS for an offloading application with only 10ms re-
configuration timing budget. We note that different image sensors
may require different amount of time to reconfigure the resolution.

That being said, theoretically, if an application operates at an
unstably fast frame rate, then Banner could potentially delay the
delivery of the frame after the resolution request. For example,
this would be the case if the application performs a memcpy of the

Session 5: Sense and See MobiSys ’19, June 17–21, 2019, Seoul, Korea

241

frame to a memory location and immediately queues the buffer
for a next capture. Still, in this case, Banner would improve the
reconfiguration latency over the legacy V4L2 framework, which
would delay frame delivery while executing the full reconfiguration
procedure – complete with memory allocation.

3.2 Format-oblivious Memory Management
As explained in §2, the legacy V4L2 framework synchronizes frame
buffer resolutions across all of its modules. Buffers are requested
and mapped for a determined resolution before the camera can
even start capturing. If the application requests another sensor res-
olution, the legacy V4L2 framework stops current streams, releases
previous frame buffers, and allocates a fresh set of buffers. Thus,
synchronizing the format can be very expensive for the resolution
reconfiguration procedure.

We propose a format-oblivious memory management that re-
moves resolution synchronization in the resolution reconfiguration
procedure. Format-oblivious memory management reuses previ-
ously allocated buffers to store frames with different formats, as
shown in Figure 6. This technique reduces the end-to-end recon-
figuration latency and frame-to-frame reconfiguration latency by
avoiding unnecessary system calls.

3.2.1 One-time buffer allocation. Instead of allocating frame buffers
every time the application requests a new resolution, format-oblivious
memory management only allocates buffers once when initializing
the camera. To support all formats, the system can allocate for
the highest supported resolution by the camera for reuse for any
resolution.

Reusing buffers brings several benefits. First, repeated mem-
ory deallocation and allocation for different sensor resolutions
are now completely avoided; ioctl(VIDIOC_REQBUFS) and mmap()
are avoided. The system call mmap() is very time consuming as
we discussed in §2. Second, current video streams are not dis-
carded. The system calls for turning on and off the video streams
– ioctl(VIDIOC_STREAMON) and ioctl(VIDIOC_STREAMOFF) re-
spectively – are avoided. Both of them consume tens of millisec-
onds. Third, since there is only one format at the receiving end, the
system doesn’t need to set the output state of camera host driver
for reconfiguration.

3.2.2 Format-oblivious frame delivery. Format-oblivious memory
management delivers the frame to the application not based on the
payload calculated by the sensor format, but based on how many
bytes are used. When the application requests another resolution,
Banner passes the format information to the camera driver and the
camera host driver appropriately. As the system needs to maintain
the current pipeline of frames, there will be a resolution discrepancy
among the frames already captured and the frames to be captured
in the new configuration.

Banner solves this problem easily by delivering the frames ac-
cording to how many bytes are used. Banner and the frame itself
will provide enough format information for the application to in-
terpret frames. We argue that as long as the application and sensor
know the format at the appropriate times, the frame can be correctly
captured, delivered, and interpreted.

480p buffer 480p buffer

Format-oblivious
in Banner

Format-aware
in legacy V4L2

Resolution request

1080p buffer

1080p frame

1080p buffer

1080p frame

1080p buffer

1080p frame

1080p buffer

1080p frame

1080p buffer 1080p buffer

1080p frame

480p frame 480p frame

480p frame

Figure 6: After a resolution request, format-oblivious mem-
ory management in Banner reuses buffers previously allo-
cated and stores newly configured frames, despite potential
format mismatch.

Format-oblivious memory management can be realized without
any modification to the video buffer driver. The only potential limi-
tation of this approach is that it allocates more memory than needed
for low resolution configurations. For example, when configured for
480p resolutions, the frame buffer will occupy the memory footprint
of a 1080p frame buffer (6 MB for 3 frames). However, on modern
mobile systems, we do not foresee this as particularly problematic;
most modern phones have at least 1 GB of RAM. More importantly,
the additional buffer allocation does not increase system power, as
DDR power consumption is governed by data rate, not allocation.
We confirm this in our evaluation.

4 IMPLEMENTATION
Our Banner prototype is built by modifying the V4L2 media frame-
work in the upstream NVIDIA Tegra TX2 Linux kernel 4.4, L4T
28.2.1. In this implementation, the application reconfigures sen-
sor resolution rapidly through only one ioctl system call.

4.1 Parallel Reconfiguration
The goal of Banner’s reconfiguration policy is to utilize idle time
in kernel space to change the format of an image sensor. After
capturing and processing a frame, the kernel camera host driver
returns to an idle state until the next capture. Knowing that the
kernel is idle, Banner can use this time to send commands that
change the sensor’s format and perform any state changing on the
camera host driver side. This sufficiently performs the operations of
reconfiguring the sensor resolution. Resolution reconfiguration is
initialized by an ioctl(VIDIOC_RECONFIGURE) call, from the appli-
cation which will set a sensor resolution format that is passed from
user space to the camera host driver object. This system call will
then immediately spawn a kernel thread to perform the reconfigure
operation. We spawn a single thread to perform our reconfiguration
as the overhead of spawning multiple times for more parallelism
made reconfiguration slower overall. Setting camera host driver
states is an immediate operation. The only part of the reconfigura-
tion process that takes significant time is configuring the camera
hardware.

4.1.1 Configure sensor device. The sensor configuration call changes
the state of the camera device. The camera driver module then con-
trols the image sensor directly by making I2C or other bus calls.
The time that configuring the sensor takes will vary from sensor

Session 5: Sense and See MobiSys ’19, June 17–21, 2019, Seoul, Korea

242

to sensor as each sensor will have a different protocol for setting
sensor format.

4.1.2 Update camera host driver state. Updating the camera host
driver’s state will prepare it to capture frames at a new resolution.
The camera host driver state must be updated immediately after
the sensor is reconfigured, as the next captured frame will be at
the sensor’s new resolution. If it is not done, the next frame will
be returned with the old resolution and be interpreted improperly
at the application level. The next ioctl(VIDIOC_QBUF) operation
will use the settings set here to capture a frame. This will also set
the input for the frame size of buffers as well as the values required
to calculate the size of buffer, so that the application knows how
many bytes to read for the frame.

4.2 Format-oblivious Memory Management
An important optimization in Banner is to reuse memory buffers,
as making mmap() and munmap() calls can take tens of milliseconds
based on the frame size. When initializing the device, after calling
ioctl(VIDIOC_REQBUFS), the buffers returned should be allocated
to the maximum size that will be used by the application. While
reusing the buffers does consume extramemorywhen the frame size
is smaller than maximum, it allows Banner to save reconfiguration
latency; the mmap() and munmap() process does not need to be
repeated.

mmap() allocates shared memory between the camera device
and the application level. Shared memory allows the camera device
driver to write frames into the buffer and the application to read
from the same address in memory. The shared memory will contain
information about the bytes used inside of the buffer, the state (if
the buffer is ready to be read from the application level), and the
raw frame data. The user application will use the buffer state to
know the length of bytes to read out into its own buffer.

4.3 User Application Library
Banner exposes the sensor resolution reconfiguration API to the
user application as a V4L2 system call. User applications can call the
Banner API, just as they use V4L2 to start video streaming. We use
the V4L2 capture example provided in [18] as a code base for our
testing. The example code opens the camera device and initializes
all memory needed for capture per the V4L2 specification. The
example code then starts a capture loop that will run until a frame
count has passed. This capture loop uses the select system call to
wait until the video buffer driver signals that the buffers are ready
for reading. The application takes ownership of the buffer by calling
ioctl(VIDIOC_DQBUF) and then copies the shared memory to an
application buffer before returning it with ioctl(VIDIOC_QBUF).

Our modifications to the example code were minimal.
(1) When the application initializes the camera, it

counts the number of frame buffers allocated. This count is
saved for future reference, as it is equal to the number of
frames in any given pipeline.

(2) Immediately after a select, on any frame, the application
can call ioctl(VIDIOC_RECONFIGURE)with the reconfigure
resolution target.

(3) After a reconfiguration call, the application starts counting
frames returned in the main-loop until the captured frames
at previous resolution are read out; at this point, the applica-
tion’s resolution is reconfigured to the new resolution.

(4) From this frame onward the frames returned by the driver
will be the new resolution.

4.3.1 OpenCV hook. When working with Banner in OpenCV, we
take our raw frames from the V4L2 capture. OpenCV requires
frames to be in BGR format, but the V4L2 camera returns UYVY. To
convert frames into a format that OpenCV can manipulate, we use
a modified CUDA function from NVIDIA. The function originally
converted YUYV to RGB, but we manipulated it to convert UYVY
to BGR by reordering the image input and output planes Once we
have our BGR frame, it is a 1 dimensional array and still not in a
form for OpenCV to work with. To fix this we call the constructor
for Mat, OpenCV’s basic object for handling images. We take care
to use the correct parameters for resolution, pixel size, plane count,
and our frame data. From there, we can use any OpenCV function
to operate on the image, such as resize, imshow, and BFMatcher.

5 EVALUATION
We evaluate Banner within the V4L2 framework on an NVIDIA
Jetson TX2 board with an ON Semiconductor AR0330 sensor. This
Jetson TX2 board has a Quad ARM A57 processor. It is one of the
most popular embedded computing devices.

The evaluation answers three questions: (i) How much recon-
figuration latency did Banner reduce when reconfiguring sensor
resolution? (ii) How much power efficiency can be gained by recon-
figuring sensor resolution dynamically and rapidly with Banner?
(iii) What does fast sensor resolution reconfiguration mean to com-
puter vision applications?

5.1 Evaluation Methodology
Workloads To evaluate and validate the effectiveness of Banner
for reconfiguring sensor resolution in a variety of vision tasks, we
choose three applications integrated with OpenCV. The first ap-
plication only displays frames at 25 FPS. This application gives
us preliminary results of the effectiveness of Banner. The second
application offloads frames to a desktop server through a direct con-
nection at 15 FPS. This application demonstrates Banner’s usage in
cloud-based vision applications. The third application implements
the same marker-based pose estimation as we described in §1.1,
running at 15 FPS. It verifies that Banner is effective for our target
application (Augmented Reality).

All three applications cycle through a set of supported resolu-
tions: 1920x1080, 1280x720, and 640x480. To compare Banner recon-
figuration against computational downsampling, we use OpenCV
resize() function to downscale 1080p frames to 480p (represented
as 1080p↓480p). The frame rate is set to be constant across different
resolutions in all applications, bounded by the frame rate in the
highest resolution, with the help from dynamic CPU and GPU clock
scaling.

We measure the metrics described below:
As we defined in §1, resolution reconfiguration latency includes

end-to-end reconfiguration latency which describes how long it takes
for the application to receive the first new frame after a resolution

Session 5: Sense and See MobiSys ’19, June 17–21, 2019, Seoul, Korea

243

Display@25FPS Offload@30FPS Offload@15FPS Pose@15FPS
0

50

100

150

200

R
ec

on
fig

ur
at

io
n

la
te

nc
y

in
m

ill
i-

se
co

nd
s

E2E Legacy E2E Banner F2F Legacy F2F Banner

Figure 7: Banner reduces end-to-end (E2E) resolution re-
configuration latency and removes frame-to-frame (F2F) la-
tency in all three workloads comparing with legacy in V4L2
framework.

is requested, and frame-to-frame latency which indicates the in-
terval during which an application receiving no frames after a
resolution is requested. Both latencies are measured by retrieving
system timestamps at the application level. In each application, they
are measured and averaged across 99 samples, i.e., 99 resolution
reconfigurations.

Power consumption is monitored by retrieving the power rail
system files on the Jetson TX2 board. These files include SYS_SoC
which monitors the power consumption of the main Tegra core,
SYS_DDR which monitors the power consumption of the LPDDR4,
SYS_CPU which monitors the power consumption of the ARM
processor, and SYS_GPU which monitors the power consumption
of the Pascal GPU. Power rail system files are written automatically
by the system at 400 KHz. In our evaluation, wemeasured the power
after the application ran at a steady state, in order to minimize the
variance. In each measurement, we acquired and averaged 600
readings for each power rail system file.

5.2 Resolution Reconfiguration Latency
Reduced by Banner

With parallel reconfiguration and format-oblivious memory man-
agement, Banner completely eliminates the frame-to-frame
latency in all three workloads and is able to halve the end-
to-end reconfiguration latency, as shown in Figure 7.

In the display workload (at 25 FPS), the average end-to-end
reconfiguration latency is reduced by 47% (from 222ms to 117ms)
and the average frame-to-frame latency is reduced by 82% (from
222ms to 41ms). In the slower offloading workload (at 15 FPS), the
average end-to-end reconfiguration latency is reduced by 9% (from
226ms to 205ms) and the average frame-to-frame latency is reduced
by 70% (from 226ms to 67ms). In the pose estimation workload (at
15 FPS), the average end-to-end reconfiguration latency is reduced
by 10% (from 225ms to 203ms) and the average frame-to-frame
latency is reduced by 70% (from 225ms to 67ms). In addition, in the
faster offloading sub-workload (at 30 FPS), the average end-to-end
reconfiguration latency is reduced by 54% (from 226ms to 105ms)
and the average frame-to-frame latency is reduced by 85% (from
226ms to 34ms).

We have several observations from these results. First, end-to-
end reconfiguration latency and frame-to-frame latency are equiv-
alent in the legacy V4L2 framework. This is because the frames
stored in the capture queue are abandoned once there is a new res-
olution request. If those frames need to be read out and processed
before the start of resolution reconfiguration – as they are in the
Android OS [15] – the end-to-end reconfiguration latency can be
even larger.

Second, the average end-to-end reconfiguration latency and
frame-to-frame the latency in legacy V4L2 framework are stable
across all three workloads because they all go through the same pro-
cedure, though they still have larger standard deviation compared
to Banner.

Third, end-to-end reconfiguration latency and frame-to-frame
latency are predictable in Banner because they depend on the frame
rate. In Banner, the first frame at new resolution will be received
after N frame intervals, where N is the number of frames already
captured and stored in the buffer queue for the previous resolu-
tion (discussed in §2.3). In our case, there are three buffers (N)
requested and thus, three captures are stored in the buffer queue
whenever a new resolution is requested by the application. There-
fore, the end-to-end reconfiguration latency in Banner is around
three frame intervals. These intervals cause the end-to-end reconfig-
uration latency to be around 120ms in Display@25FPS and 200ms
in Pose@15FPS, as shown in Figure 7. Frame-to-frame latency in
Banner is equal to the inverse of the processing frame rate. The
application will receive continuous frames at the same frame rate
without noticing the resolution reconfiguration procedure. In other
words, Banner eliminates frame drops.

5.3 Power Efficiency Improved by Banner
Table 2 demonstrates that rapid sensor resolution reconfigu-
ration with Banner enables a substantial power efficiency
improvement. We note the following observations.

First, the resolution-based power efficiency improvement is generic
to vision tasks and components across the system (e.g., SoC, DDR,
CPU, GPU). In all three evaluated workloads, the choice of sensor
resolution influences the power consumption of all stages in the
image processing pipeline, including data movement, storage, and
processing. The results in Table 2 show that SoC, GPU, DDR, and
CPU all benefit from processing lower resolution frames in terms
of power savings.

Second, the power efficiency improvement is substantial as the
sensor resolution drops. In legacy V4L2, the combined power con-
sumption is reduced by 62%, 60%, and 42% as sensor resolution is
reduced from 1080p to 480p in display, offload, and pose estimation
workloads respectively. Thus, the power efficiency of a mobile vi-
sion task can be significantly improved if the system allows dynamic
sensor reconfiguration when it can sacrifice resolution.

Third, reconfiguring sensor resolution physically is much more
power efficient than other alternatives, i.e., computational down-
sampling. 1080p↓480p@FPS in Table 2 shows the power consump-
tion of downsampling 1080p frames to 480p in the legacy V4L2
framework. Comparing with reconfiguring sensor resolution physi-
cally to 480p in Banner, downsampling consumes 43%, 49%, and 16%
more power in display, offload, and pose estimation accordingly.

Session 5: Sense and See MobiSys ’19, June 17–21, 2019, Seoul, Korea

244

Workload Resolution@FPS Legacy V4L2 Banner
SoC GPU DDR CPU Total SoC GPU DDR CPU Total

Display-only

1920x1080@25 1149 910 1869 2460 6388 1149 918 1839 2190 6096
1280x720@25 1073 611 1727 1076 4487 1073 559 1704 1100 4436
640x480@25 617 306 826 691 2440 669 306 860 681 2516

1080p↓480p@25 1078 613 1690 1035 4416 N/A N/A N/A N/A N/A

Cloud-based offloading

1920x1080@15 1073 536 1629 1967 5205 1146 544 1638 2027 5355
1280x720@15 688 230 863 617 2398 700 230 856 630 2416
640x480@15 617 230 702 540 2089 630 230 687 554 2101

1080p↓480p@15 1073 382 1606 1032 4093 N/A N/A N/A N/A N/A

Marker-based pose estimation

1920x1080@15 1281 1701 1940 2524 7446 1149 1448 1875 2527 6999
1280x720@15 1230 1058 1814 1271 5373 1225 987 1795 1203 5210
640x480@15 1210 589 1635 928 4362 1150 540 1637 916 4243

1080p↓480p@15 1227 850 1727 1260 5064 N/A N/A N/A N/A N/A
Table 2: Total system power consumption (mW) is reduced by 62%, 60%, and 42% as sensor resolution is reduced from 1080p
(1920x1080 in legacy V4L2) to 480p (640x480 in legacy V4L2), in each workload accordingly. In addition, physically reconfiguring
sensor resolution to 480p (640x480 in Banner) consumes 43%, 49%, and 16% less total system power than downsampling 1080p to
480p (1080p↓480p in legacy V4L2), in each workload accordingly.

Resolution-Framework SoC GPU DDR CPU Total
1920x1080-V4L2 803 230 951 879 2863
1280x720-V4L2 637 230 686 693 2246
640x480-V4L2 612 230 618 613 2073

99x-reconf.-V4L2 659 230 719 691 2299
99x-reconf.-Banner 620 230 644 600 2094

Table 3: Reconfiguring sensor resolution dynamically (99x-
reconf.-Banner) can reduce 27% of the combined system
power consumption (mW) comparingwith constantly work-
ing at 1080p (1920x1080-V4L2), measured with our CPU-
based cloud-based offloading workload working at 30 FPS.

5.3.1 Effectiveness of Dynamic Reconfiguration. To demonstrate
the power efficiency improvement brought by Banner for reconfig-
uring sensor resolution dynamically, we conduct a simple exper-
iment in which the sensor resolution cycles through 1080p, 720p,
and 480p every 10 frames (a randomly chosen number) in a total
of 1000 frames. This results in 99 resolution reconfigurations. We
run this pattern with our CPU-based cloud-based offloading work-
load working at 30 FPS. The results in Table 3 show that even in
legacy V4L2 framework, reconfiguring sensor resolution dynami-
cally (99x-reconf.-V4L2) can reduce 20% of the combined system
power consumption comparing with constantly working at 1080p –
notably, there are substantial frame drops with each reconfiguration
in the legacy V4L2 system.

Meanwhile, reconfiguring sensor resolution with Banner (99x-
reconf.-Banner) can further reduce total power consumption by 9%
and without the frame drop penalty, compared with 99x-reconf.-
V4L2. These power savings come from the use of fewer operations to
reconfigure the sensor format and no repeatedmemory allocation in
Banner. The power consumption of 99x-reconf.-Banner is roughly
about the same as constantly working at 480p.

5.3.2 Power overhead of Banner. As shown in Table 2, comparing
between Banner and legacy V4L2 framework, there is no obvious
power overhead. Specifically, Banner does not consume more DDR
power despite its allocation of more memory than the active reso-
lution requires. This is because DDR power consumption is based
on data rate, not buffer size [36].

5.4 Implications
Banner enables rapid sensor resolution reconfiguration by eliminat-
ing frame-to-frame latency and halving the end-to-end reconfigura-
tion latency. This unlocks a more than 49% system power consump-
tion reduction by reconfiguring the image sensor resolution from
1080p to 480p comparing with computationally downsampling to
1080p↓480p. As we mentioned in our motivation, in a variety of
vision tasks, the image resolution needs to be configured dynami-
cally to adapt to environmental changes in order to maximize the
power efficiency. For example, the required sensor resolution can
be determined dynamically based on the continuously changing dis-
tance between the image sensor and the marker in a marker-based
pose estimation application. Our evaluation in the marker-based
pose estimation application on the Jetson/AR0330 system reveals
that the estimated pose accuracy can be maintained (±0.1 cm MSE
translation vector error) even if the image resolution is reconfigured
from 1080p to 720p and then to 480p as the distance between the
image sensor and the marker is reduced from 40 cm to 20 cm. This
results in a 28% power consumption reduction between 1080p and
720p and a 42% power consumption reduction between 1080p and
480p.

6 DISCUSSION AND FUTUREWORK
Driver modification: Banner does not modify the camera driver,
which is often a sensitive proprietary piece of software. Banner also
does not add any dependencies to the video buffer driver. Banner
only involves changes in the camera host driver and exposes itself
as a system call to the application developers, as the V4L2 driver

Session 5: Sense and See MobiSys ’19, June 17–21, 2019, Seoul, Korea

245

does. Thus, developers can use Banner just as they use the V4L2
framework for video streaming. If developers want to use other
media frameworks with the Banner-based camera host driver, they
also need to modify the media frameworks’ library. In addition,
as we mentioned in §3.1, different images sensors take different
amount of time to reconfigure resolution. Banner can be further
optimized if image sensor manufactures are able to optimize the
camera driver implementation together with the camera hardware
for faster sensor resolution reconfiguration.
Memory management: Banner allocates more memory than is
needed for smaller resolution. However, allocating three buffers for
1920x1080 frames with 8 bits per pixel only requires 6MB mem-
ory. Storing 640x480 frames in them will cause memory waste but
only about 5MB. Unused memory does not incur power overhead,
as observed from our evaluation. If the application still wants to
utilize that memory, Banner’s memory management is able to pro-
vide enough information. We did not implement or evaluate this
fine-grained memory management in this version of Banner. We
assume resolution change is frequent in some vision applications
who want to utilize resolution-based energy and accuracy tradeoff.
Thus, the memory management could face an interesting but com-
plex situation that requires frequently reallocating memory and/or
losing access to memory. We will investigate more sophisticated
memory management in future work.
Other system support: Banner will benefit almost all systems
that build upon the Linux system, including the Android OS. How-
ever, we were unable to implement and test Banner in the Android
environment because of the closed source camera host and device
drivers. In particular, the Android OS requires captured frames to
be read out before reconfiguring the sensor resolution which allows
Banner to fit in. We suggest the following three policies for inte-
grating Banner to the Android OS. (i) Direct the resolution request
to Banner API through the Android frameworks and camera HAL.
(ii) Issue the resolution request directly in current camera preview
and capture session. The Android OS requires captured frames
with previous resolution to be readout before reconfiguring the
sensor (a function called waitUtilIdle()) which perfectly match
the parallel reconfiguration component in Banner. (iii) Update the
preview size based on frame metadata right after waitUtilIdle()
finishes. In addition, the concepts of parallel reconfiguration and
format-oblivious memory management in Banner are also generic
to other media frameworks, not only the V4L2 framework.
Machine learning support:Machine learning based vision appli-
cations also have resolution-based tradeoffs [26, 31, 33, 39]. Banner
as a media framework is generic to upper level applications. How-
ever, based on our understanding, most of the neural networks
often work on fixed-size images. The structural influence of Banner
to neural networks still needs to be explored. Machine learning
developers are welcome to use Banner to find opportunities relying
on resolution-based performance and accuracy tradeoff.
Optimal resolution selection algorithm: When we evaluated
Banner with the OpenCV marker-based pose estimation, we trig-
gered the resolution change based on the physical distance between
the maker and the sensor. We noticed that the frequency of resolu-
tion reconfiguration definitely affects the amount of power savings.
Maximizing power saving with minimum performance drop can be
determined by many factors according to different applications. We

are targeting on a more sophisticated resolution selection algorithm
as our future work, such as teaching the machine to decide when to
change the sensor resolution in a machine learning environment.
Limitations: As we discussed in the evaluation, the reduction in
end-to-end reconfiguration latency could vary depending on the
frame rate. If the frame rate is low, the reduction in end-to-end
reconfiguration latency can be alleviated, as shown in the slower
cloud-based offloading and the pose estimation workloads. Another
limitation is that sensor resolution reconfiguration takes time in
Banner, even though it can be completely hidden behind applica-
tion process. Thus, if the application process is very fast, then the
frame rate for that specific frame during resolution reconfiguration
will be limited. Improvements in camera design and camera driver
implementation are required to further reduce the sensor resolution
reconfiguration latency.

7 RELATEDWORK
Resolution-based energy, performance and accuracy trade-
off:Ha et al. [11] and Hu et al. [15] verified the resolution-based en-
ergy, performance and accuracy tradeoff onmobile devices. LiKamWa
et al. [22] demonstrated that image sensor energy consumption can
be proportional to frame rate and resolution. Sundaram [35] down-
sampled the images for faster frame rate. Kumar et al. [21] cropped
the images for faster training. Haris et al. [12] and Růžička et al. [33]
increased the resolution for more accurate object detection. YOLO3
[31] and Lin et al. [26] explored the resolution-based performance
and accuracy tradeoff in machine learning based vision applica-
tions. Lin et al. [25] even demonstrated that energy, performance
and accuracy tradeoff exists in other types of sensors. However, no
frame-critical application is able to change resolution at runtime
because resolution change incurs long latency penalties in current
operating systems as we described in the previous sections. Banner
provides rapid and no-frame-drop sensor reconfiguration, unlock-
ing the ability for these vision tasks to use resolution-based energy,
performance, and accuracy tradeoff in real-time.
Consecutive captureswith different settings: Photography can
blend several frames captured with different sensor settings for
improving image quality. High Dynamic Range imaging rapidly
takes three photos with different exposure settings [2, 38]. Simi-
larly, Samsung’s [34] multi-frame image processing utilized several
consecutive captures to reduce the blur. Frankencamera [1] and
KHRONOS Group [10] recognized the significance of programma-
bility for camera operation. Sensor register change can be effective
in the next capture [27, 28] such that sensor settings, e.g., expo-
sure, can be tailored for each frame. Android has provided system
support for streamlined reconfiguration. Unfortunately, this does
not work for resolution reconfiguration, primarily because of the
sequential reconfiguration patterns and memory management is-
sues we discussed in this work. Banner enables tailoring each frame
for different resolutions for a variety of vision tasks that need
resolution-based energy efficiency tradeoffs.
Towards energy efficient continuous sensing: Rigel introduced
flexible multi-rate image processing pipeline to improve vision
tasks’ performance with three orders of magnitudes lower energy
consumption [14]. Darkroom [13] eased developers burden to uti-
lize specialized image signal processors for higher energy efficiency.

Session 5: Sense and See MobiSys ’19, June 17–21, 2019, Seoul, Korea

246

Roy et al. [32] introduced an energy-efficiency context recognition
framework for multi-modal sensing. LittleRock [30] [29] proposed
dedicated low-level processing hardware to reduce sensing power.
Reflex [24] helped developers to leverage low-power processors on
mobile devices. Buckler et al. [6] abandoned image signal processing
hardware to reduce energy consumption. Chu et al. [8] proposed
a tool to classify sensor data for efficient multimodal sensing on
mobile devices. SeeMon [17] helped applications to efficiently un-
derstand context from numerous sensors. Glimpse [7] proposed an
energy efficient continuous object detection system that balanced
the accuracy and energy tradeoff between local and offload comput-
ing. Starfish [23] enabled resource sharing among computer vision
applications to improve energy efficiency. In addition to these, Ban-
ner enables rapid sensor resolution-based energy tradeoff at the
operating system level to improve continuous sensing efficiency.

8 CONCLUSION
We observe a substantial image sensor resolution reconfiguration
latency caused by the sequential reconfiguration procedure in cur-
rent operating systems. This long reconfiguration latency gives
vision applications a perception of losing frames which impedes
the adoption of otherwise beneficial resolution-energy tradeoff
mechanisms. In this paper, we propose Banner as a system solution
for providing rapid and seamless image sensor resolution reconfig-
uration. Evaluated in three different OpenCV workloads including
display-only, cloud-based offloading, and marker-based pose es-
timation running on a Jetson TX2 board, Banner is able to halve
the end-to-end reconfiguration latency and completely remove the
frame-to-frame latency, i.e., no frame drop during sensor resolution
reconfiguration even for workloads working at 30 FPS. This allows
a more than 49% system power consumption reduction comparing
reconfiguring the sensor resolution from 1080p to 480p with down-
sampling 1080p↓480p. Banner unlocks a variety of mobile vision
tasks to dynamically reconfigure sensor resolutions to adapt to the
environmental change and then maximize the energy efficiency.

AcknowledgementWe sincerely thank Jeremy C. Andrus for
shepherding the final version of this paper and all the valuable
reviews given by the anonymous reviewers. This material is based
upon work supported by the National Science Foundation under
Grant No. CNS-1657602. The work was also supported by Samsung
Mobile Processor Innovation Lab.

REFERENCES
[1] Andrew Adams, Eino-Ville Talvala, Sung Hee Park, David E. Jacobs, Boris Ajdin,

Natasha Gelfand, Jennifer Dolson, Daniel Vaquero, Jongmin Baek, Marius Tico,
Hendrik P. A. Lensch, Wojciech Matusik, Kari Pulli, Mark Horowitz, and Marc
Levoy. 2010. The Frankencamera: An Experimental Platform for Computational
Photography. In ACM SIGGRAPH 2010 Papers (SIGGRAPH ’10). ACM. https:
//doi.org/10.1145/1833349.1778766

[2] Apple. 2018. Use HDR on your iPhone, iPad, and iPod touch. (2018). https:
//support.apple.com/en-us/HT207470

[3] Apple. 2019. ARKit. (2019). https://developer.apple.com/arkit//
[4] Saul Berenbaum. 2013. Google Glass Explorer Edition has a 30-minute bat-

tery life while shooting video. (2013). https://www.digitaltrends.com/mobile/
google-glass-30-minute-videobattery/

[5] Mark Buckler, Philip Bedoukian, Suren Jayasuriya, and Adrian Sampson. 2018.
EVA2: Exploiting Temporal Redundancy in Live Computer Vision. In Proceedings
of the 45th Annual International Symposium on Computer Architecture (ISCA ’18).
IEEE Press, Piscataway, NJ, USA, 533–546. https://doi.org/10.1109/ISCA.2018.
00051

[6] Mark Buckler, Suren Jayasuriya, and Adrian Sampson. 2017. Reconfiguring the
Imaging Pipeline for Computer Vision. In The IEEE International Conference on
Computer Vision (ICCV).

[7] Tiffany Chen, Hari Balakrishnan, Lenin Ravindranath, and Paramvir Bahl. 2016.
Glimpse: Continuous, Real-Time Object Recognition on Mobile Devices. Get-
Mobile: Mobile Computing and Communications 20 (07 2016), 26–29. https:
//doi.org/10.1145/2972413.2972423

[8] David Chu, Nicholas D. Lane, Ted Tsung-Te Lai, Cong Pang, Xiangying Meng,
Qing Guo, Fan Li, and Feng Zhao. 2011. Balancing Energy, Latency and Accuracy
for Mobile Sensor Data Classification. In Proceedings of the 9th ACM Conference
on Embedded Networked Sensor Systems (SenSys ’11). ACM. https://doi.org/10.
1145/2070942.2070949

[9] Google. 2019. ARcore. (2019). https://developers.google.com/ar//
[10] KHRONOS Group. 2013. Camera BOF. (2013). https://www.khronos.org/

assets/uploads/developers/library/2013-siggraph-camera-bof/Camera-BOF_
SIGGRAPH-2013.pdf

[11] Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan Pillai,
and Mahadev Satyanarayanan. 2014. Towards Wearable Cognitive Assistance.
In Proceedings of the 12th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys ’14). ACM.

[12] Muhammad Haris, Greg Shakhnarovich, and Norimichi Ukita. 2018. Task-
Driven Super Resolution: Object Detection in Low-resolution Images. CoRR
abs/1803.11316 (2018). arXiv:1803.11316 http://arxiv.org/abs/1803.11316

[13] James Hegarty, John Brunhaver, Zachary DeVito, Jonathan Ragan-Kelley, Noy
Cohen, Steven Bell, Artem Vasilyev, Mark Horowitz, and Pat Hanrahan. 2014.
Darkroom: CompilingHigh-level Image Processing Code intoHardware Pipelines.
ACM Trans. Graph. 33, 4, Article 144 (July 2014), 11 pages. https://doi.org/10.
1145/2601097.2601174

[14] James Hegarty, Ross Daly, Zachary DeVito, Jonathan Ragan-Kelley, Mark
Horowitz, and Pat Hanrahan. 2016. Rigel: Flexible Multi-rate Image Process-
ing Hardware. ACM Trans. Graph. 35, 4, Article 85 (July 2016), 11 pages.
https://doi.org/10.1145/2897824.2925892

[15] Jinhan Hu, Jianan Yang, Vraj Delhivala, and Robert LiKamWa. 2018. Characteriz-
ing the Reconfiguration Latency of Image Sensor Resolution on Android Devices.
In Proceedings of the 19th International Workshop on Mobile Computing Systems
& Applications (HotMobile ’18). ACM. https://doi.org/10.1145/3177102.3177109

[16] Rizwan Mohamed Ibrahim. 2019. Camera. (2019). https://github.com/rizwankce/
Camera/

[17] Seungwoo Kang, Jinwon Lee, Hyukjae Jang, Hyonik Lee, Youngki Lee, Souneil
Park, Taiwoo Park, and Junehwa Song. 2008. SeeMon: Scalable and Energy-
efficient Context Monitoring Framework for Sensor-rich Mobile Environments.
In Proceedings of the 6th International Conference on Mobile Systems, Applications,
and Services (MobiSys ’08). ACM. https://doi.org/10.1145/1378600.1378630

[18] The kernel development community. V4L2 video capture example.
[19] The kernel development community. 2019. ioctl VIDIOC_REQBUFS. (2019).

https://linuxtv.org/downloads/v4l-dvb-apis/uapi/v4l/vidioc-reqbufs.html
[20] Venkatesh Kodukula, Sai Bharadwaj Medapuram, Britton Jones, and Robert

LiKamWa. 2018. A Case for Temperature-Driven Task Migration to Balance
Energy Efficiency and Image Quality of Vision Processing Workloads. In Pro-
ceedings of the 19th International Workshop on Mobile Computing Systems &
Applications (HotMobile ’18). ACM. https://doi.org/10.1145/3177102.3177111

[21] Athindran Ramesh Kumar, Balaraman Ravindran, and Anand Raghunathan. 2018.
Pack and Detect: Fast Object Detection in Videos Using Region-of- Interest Pack-
ing. ArXiv e-prints, Article arXiv:1809.01701 (Sept. 2018), arXiv:1809.01701 pages.
arXiv:cs.CV/1809.01701

[22] Robert LiKamWa, Bodhi Priyantha, Matthai Philipose, Lin Zhong, and Paramvir
Bahl. 2013. Energy Characterization and Optimization of Image Sensing To-
ward Continuous Mobile Vision. In Proceeding of the 11th Annual International
Conference on Mobile Systems, Applications, and Services (MobiSys ’13). ACM.
https://doi.org/10.1145/2462456.2464448

[23] Robert LiKamWa and Lin Zhong. 2015. Starfish: Efficient Concurrency Support
for Computer Vision Applications. In Proceedings of the 13th Annual International
Conference on Mobile Systems, Applications, and Services, MobiSys ’15. ACM. https:
//doi.org/10.1145/2742647.2742663

[24] Felix Xiaozhu Lin, Zhen Wang, Robert LiKamWa, and Lin Zhong. 2012. Reflex:
Using Low-power Processors in Smartphones Without Knowing Them. SIGPLAN
Not. 47, 4 (March 2012), 13–24. https://doi.org/10.1145/2248487.2150979

[25] Kaisen Lin, Aman Kansal, Dimitrios Lymberopoulos, and Feng Zhao. 2010.
Energy-accuracy Trade-off for ContinuousMobile Device Location. In Proceedings
of the 8th International Conference on Mobile Systems, Applications, and Services
(MobiSys ’10). ACM. https://doi.org/10.1145/1814433.1814462

[26] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár.
2017. Focal Loss for Dense Object Detection. CoRR abs/1708.02002 (2017).
arXiv:1708.02002 http://arxiv.org/abs/1708.02002

[27] ON Semiconductor 2017. AR0330 1/3-inch CMOS Digital Image Sensor. ON
Semiconductor. Rev. 18.

[28] ON Semiconductor 2017. MT9P031 1/2.5-Inch 5 Mp CMOS Digital Image Sensor.
ON Semiconductor. Rev. 10.

Session 5: Sense and See MobiSys ’19, June 17–21, 2019, Seoul, Korea

247

https://doi.org/10.1145/1833349.1778766
https://doi.org/10.1145/1833349.1778766
https://support.apple.com/en-us/HT207470
https://support.apple.com/en-us/HT207470
https://developer.apple.com/arkit//
https://www.digitaltrends.com/mobile/google-glass-30-minute-videobattery/
https://www.digitaltrends.com/mobile/google-glass-30-minute-videobattery/
https://doi.org/10.1109/ISCA.2018.00051
https://doi.org/10.1109/ISCA.2018.00051
https://doi.org/10.1145/2972413.2972423
https://doi.org/10.1145/2972413.2972423
https://doi.org/10.1145/2070942.2070949
https://doi.org/10.1145/2070942.2070949
https://developers.google.com/ar//
https://www.khronos.org/assets/uploads/developers/library/2013-siggraph-camera-bof/Camera-BOF_SIGGRAPH-2013.pdf
https://www.khronos.org/assets/uploads/developers/library/2013-siggraph-camera-bof/Camera-BOF_SIGGRAPH-2013.pdf
https://www.khronos.org/assets/uploads/developers/library/2013-siggraph-camera-bof/Camera-BOF_SIGGRAPH-2013.pdf
http://arxiv.org/abs/1803.11316
http://arxiv.org/abs/1803.11316
https://doi.org/10.1145/2601097.2601174
https://doi.org/10.1145/2601097.2601174
https://doi.org/10.1145/2897824.2925892
https://doi.org/10.1145/3177102.3177109
https://github.com/rizwankce/Camera/
https://github.com/rizwankce/Camera/
https://doi.org/10.1145/1378600.1378630
https://linuxtv.org/downloads/v4l-dvb-apis/uapi/v4l/vidioc-reqbufs.html
https://doi.org/10.1145/3177102.3177111
http://arxiv.org/abs/cs.CV/1809.01701
https://doi.org/10.1145/2462456.2464448
https://doi.org/10.1145/2742647.2742663
https://doi.org/10.1145/2742647.2742663
https://doi.org/10.1145/2248487.2150979
https://doi.org/10.1145/1814433.1814462
http://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1708.02002

[29] Bodhi Priyantha, Dimitrios Lymberopoulos, and Jie Liu. EERS: Energy Efficient
Responsive Sleeping on Mobile Phones.

[30] B. Priyantha, D. Lymberopoulos, and J. Liu. 2011. LittleRock: Enabling Energy-
Efficient Continuous Sensing on Mobile Phones. IEEE Pervasive Computing 10, 2
(April 2011), 12–15. https://doi.org/10.1109/MPRV.2011.28

[31] Joseph Redmon and Ali Farhadi. 2018. YOLOv3: An Incremental Improvement.
CoRR abs/1804.02767 (2018). arXiv:1804.02767 http://arxiv.org/abs/1804.02767

[32] N. Roy, A. Misra, C. Julien, S. K. Das, and J. Biswas. 2011. An energy-efficient qual-
ity adaptive framework for multi-modal sensor context recognition. In 2011 IEEE
International Conference on Pervasive Computing and Communications (PerCom).
https://doi.org/10.1109/PERCOM.2011.5767596

[33] Vít Ruzicka and Franz Franchetti. 2018. Fast and accurate object detection
in high resolution 4K and 8K video using GPUs. CoRR abs/1810.10551 (2018).
arXiv:1810.10551 http://arxiv.org/abs/1810.10551

[34] Samsung. 2017. [In-Depth Look] Fast, Fun and In-Focus: The
Galaxy S8 Camera. (2017). https://news.samsung.com/global/

in-depth-look-fast-fun-and-in-focus-the-galaxy-s8-camera
[35] Narayanan Sundaram. 2012. Making computer vision computationally efficient.

Ph.D. Dissertation. EECS Department, University of California, Berkeley. http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-106.html

[36] Micron Technology. Calculating Memory System Power for DDR.
https://www.micron.com/~/media/Documents/Products/Technical%20Note/
DRAM/TN4603.pdf

[37] Vuforia. 2019. Innovate With Industrial Augmented Reality. (2019). https:
//www.ptc.com/en/products/augmented-reality/

[38] Wikipedia. 2018. High-dynamic-range imaging. (2018).
[39] Boyu Zhang, Azadeh Davoodi, and Yu-Hen Hu. 2018. Exploring Energy and

Accuracy Tradeoff in Structure Simplification of Trained Deep Neural Networks.
In Proceedings of the 23rd Asia and South Pacific Design Automation Conference
(ASPDAC ’18). IEEE Press. http://dl.acm.org/citation.cfm?id=3201607.3201693

Session 5: Sense and See MobiSys ’19, June 17–21, 2019, Seoul, Korea

248

https://doi.org/10.1109/MPRV.2011.28
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
https://doi.org/10.1109/PERCOM.2011.5767596
http://arxiv.org/abs/1810.10551
http://arxiv.org/abs/1810.10551
https://news.samsung.com/global/in-depth-look-fast-fun-and-in-focus-the-galaxy-s8-camera
https://news.samsung.com/global/in-depth-look-fast-fun-and-in-focus-the-galaxy-s8-camera
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-106.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-106.html
https://www.micron.com/~/media/Documents/Products/Technical%20Note/DRAM/TN4603.pdf
https://www.micron.com/~/media/Documents/Products/Technical%20Note/DRAM/TN4603.pdf
https://www.ptc.com/en/products/augmented-reality/
https://www.ptc.com/en/products/augmented-reality/
http://dl.acm.org/citation.cfm?id=3201607.3201693

	Abstract
	1 introduction
	1.1 Case Study for Resolution-driven Tradeoffs

	2 Understanding the resolution reconfiguration latency
	2.1 Reconfiguration is a sequential process
	2.2 Resolution Synchronization Creates Latency
	2.3 Reconfiguration Latency Drops Frames
	2.4 Design Guidelines

	3 Design of Banner
	3.1 Parallel Reconfiguration
	3.2 Format-oblivious Memory Management

	4 Implementation
	4.1 Parallel Reconfiguration
	4.2 Format-oblivious Memory Management
	4.3 User Application Library

	5 Evaluation
	5.1 Evaluation Methodology
	5.2 Resolution Reconfiguration Latency Reduced by Banner
	5.3 Power Efficiency Improved by Banner
	5.4 Implications

	6 Discussion and future work
	7 related work
	8 conclusion
	References

