
Characterizing Real-Time Dense Point Cloud
Capture and Streaming on Mobile Devices

Jinhan Hu, Aashiq Shaikh, Alireza Bahremand, Robert LiKamWa
Meteor Studio, Arizona State University

Tempe, Arizona, USA

jinhanhu,ashaik11,abahrema,likamwa@asu.edu

ABSTRACT

Point clouds are a dense compilation of millions of points that can

advance content creation and interaction in various emerging ap-

plications such as Augmented Reality (AR). However, point clouds

consist of per-point real-world spatial and color information that

are too computationally intensive to meet real-time specifications,

especially on mobile devices. To stream dense point cloud (PtCl) to

mobile devices, existing solutions encode pre-captured point clouds,

yet with PtCl capturing treated as a separate offline operation.

To discovermore insights, we combine PtCl capturing and stream-

ing as an entire pipeline and build a research prototype to study the

bottlenecks of its real-time usage on mobile devices, consisting of a

depth sensorwith high precision and resolution, an edge-computing

development board, and a smartphone. In a custom Unity app, we

monitor the latency of each operation from the capturing to the

rendering, as well as the energy efficiency of the board and the

smartphone working at different point cloud resolutions. Results

reveal that a toolset helping users efficiently capture, stream, and

process color and depth data is the key enabler to real-time PtCl

capturing and streaming on mobile devices.

KEYWORDS

Dense point cloud streaming prototype; Performance and energy

characterization; Point cloud rendering on mobile devices

ACM Reference Format:

Jinhan Hu, Aashiq Shaikh, Alireza Bahremand, Robert LiKamWa. 2022.

Characterizing Real-Time Dense Point Cloud Capture and Streaming on

Mobile Devices. In 3rd ACM Workshop on Hot Topics in Video Analytics

and Intelligent Edges (HotEdgeVideo’21), January 31-February 4, 2022, New

Orleans, LA, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.

1145/3477083.3480155

1 INTRODUCTION

Point clouds containing 3D spatial data can enable users to inter-

act with the physical world sensed through a digital device in an

immersive way to improve performance, enhance knowledge, and

spark imagination in various tasks. The ongoing development of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HotEdgeVideo’21, January 31-February 4, 2022, New Orleans, LA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8700-2/22/01. . . $15.00
https://doi.org/10.1145/3477083.3480155

(a) Depth data captured at

binned (512x512).

(b) Depth data captured at un-

binned (1024x1024).

(c) PtCl reconstructed from

720p color data and unbinned

depth data.

(d) PtCl reconstructed from

2160p color data and unbinned

depth data.

Figure 1: A comparison of depth data and PtCl captured at

two different resolutions.

cutting-edge sensing hardware, software, algorithms, and associ-

ated development kits have enabled the usage of point clouds in a

wide range of exciting use cases including computer vision, artificial

intelligence, autonomous driving, entertainment, and augmented

reality, etc [10, 31, 32, 34, 43].

Despite these advancements, a challenge remains in that point

cloud data is either dense with high depth precision that can only

be processed on desktops with high-end GPUs, or sparse with

low depth precision that is suitable to be processed on mobile

devices. The smooth and dense point cloud enables fine-grained

data visualization but comes with the cost of limited user mobility

and interactivity. On the other hand, the sparse point cloud on

mobile devices enables mobility and real-time user interactivity

but comes with the cost of impaired visualization quality and task

accuracy. As shown in Table 1, a comparison of state-of-the-art 3D

sensors on/off mobile devices demonstrates a balanced resolution-

power tradeoff [3, 15, 16, 30, 37]. Figure 1 shows a comparison of

depth data and PtCl captured at two resolutions. Compared with

depth data captured at the binned (512x512) mode (in Figure 1a), the

1

Depth Sensor Resolution Power

Azure Kinect
512x512 225mW

1024x1024 950mW

Intel RealSense D435i 1280x720 752mW1

ToF on Samsung S21 640x480 160mW

LiDAR on iPhone 12 256x192 N/A2

Table 1: A comparison of state-of-the-art 3D sensors on/off

mobile devices.

depth is smoother, richer, andmore precise captured at the unbinned

(1024x1024) mode (in Figure 1b). Similarly, PtCl reconstructed from

the 2160p color and unbinned depth data (in Figure 1d) is more

consistent and detailed than it is reconstructed from the 720p color

and unbinned depth data (in Figure 1c), especially at the boundary.

To bring dense point cloud (referred to as PtCl in this paper)

to mobile devices, related works mostly focused on reducing the

amount of data to be transmitted, offline after the data is already

captured. For example, some works first encode PtCl offline using

state-of-the-art libraries [4, 21] and then stream and decode them

on mobile devices [9, 18, 33]. Some other works further divide PtCl

into different regions based on the position of each point and then

represent different regions using different resolutions to utilize the

resolution-based accuracy and performance tradeoffs [35, 40]. Ad-

ditionally, other existing works utilize dynamic adaptive streaming

over HTTP (DASH) to dynamically determine the amount of PtCl

to be streamed under different networking conditions [12, 17, 38].

Mobile devices are able to live-stream 4K videos at more than

30 FPS, but why not PtCl? To identify the bottlenecks of real-time

PtCl capturing and streaming on mobile devices, we built a research

prototype using three off-the-shelf components, consisting of an

RGB-D sensor with high depth resolution and precision, an edge-

computing development board, and a smartphone, as shown in

Figure 2 inspired by [41]. On top of this prototype, we develop and

run a Unity application on the Android platform and perform sev-

eral experiments to monitor the latency of each important operation

in the capturing-to-rendering pipeline (including view transforma-

tion, data preparation, data transmission, etc.), as well as the energy

efficiency (energy consumption per frame) of the board and the

smartphone.

The findings from the experimental results are straightforward:

(i) the throughput of the hardware on mobile devices is limited,

therefore mobile devices cannot handle the massive amount of raw

PtCl. For instance, one point of RGB-D data captured by an Azure

Kinect sensor consists of 3 bytes color values and 12 bytes depth

values. This results in 151MB data to be captured and streamed

per frame if working at 4K resolution, requiring a throughput of

36Gbps working at 30 FPS. As shown in our evaluation, rendering

PtCl (captured at a resolution as low as 720p) in the Unity app run-

ning on a Pixel 3XL struggles to meet real-time specification even

with GPU acceleration. (ii) the representation of PtCl is not opti-

mized for rendering on mobile devices. The view transformation

1The power consumption of D435i module is calculated by combining the power
consumption of dual wide imagers and IR.
2LiDAR component cannot be treated as a standalone module to be measured due to
core underlying modules of the ARKit SDK.

and XYZ-RGB data format make the streaming of PtCl unneces-

sarily large in data size. Although point cloud libraries can encode

spatial information to reduce the data size, they are not suitable

for encoding color info and their latency is unacceptable for live-

streaming. In addition, there is an optimization gap between raw

PtCl and its representation in rendering components, e.g., particle

and its texture material.

These findings motivate the development of a software stack

that can help upper level PtCl apps running on mobile devices

sense 3D space efficiently, in which these apps can: (i) adaptively

define the region of interest to capture and stream with the least

amount of PtCl needed. Reducing the amount of data captured

under the premises of maintaining app performance can reduce

operation latency and improve energy efficiency from the root. (ii)

dynamically determine the operations to be performed on/off device.

The entire PtCl capturing-to-rendering pipeline involves multiple

operations that can be optimized to balance the performance and

energy tradeoffs on mobile devices. (iii) drive rendering-oriented

PtCl capturing and processing. PtCl can be tailored based on the

component used in the rendering engine to enable geometry-based

tradeoffs. (iv) plug and play in 5G environment. We look forward

to applying and testing our work in emerging 5G-based interactive

PtCl applications to unlock more possibilities that are currently

limited by the processing power of mobile devices.

2 RELATEDWORK

2.1 Adaptive Resolution

Resolution-based accuracy and performance tradeoffs exist in both

2D color images and 3D depth data [14, 22]. Hu et al. introduced

Banner [13, 23] which is a media framework that enables fast sen-

sor resolution reconfiguration such that AR apps can make use of

resolution-based tradeoffs to extend battery life while maintaining

a smooth AR experience. In [7], Ha et al. studied the improvements

in energy usage and response time after lowering the sensor reso-

lution for object detection tasks on a Google Glass wearable device.

In [24], LiKamWa et al. verified the energy proportionality to image

sensor resolution and frame rate. In [40], Wang et al. proposed a

voxel-based representation of the LiDAR point cloud, in which a

voxel is reconfigured with neighbors having different resolutions

such that the convolution is more efficient and the 3D object de-

tection accuracy is improved. Riegler et al. introduced OctNet [35],

in which less important regions are represented with less data,

while important regions are represented with more data resulting

in improved overall learning accuracy.

2.2 Dynamic Point Cloud Streaming

Dynamic adaptive streaming over HTTP (DASH) [1] is widely

adopted in video streaming to dynamically adjust the video quality

under various network conditions. In [17], Lederer et al. introduced

a public DASH dataset as well as a DASH encoder to enable the

comparison between different adaptation algorithms. On top of

DASH, Hosseini et al. presented DASH-PC [12] to adaptively stream

point clouds, with several optimization techniques integrated such

as exploiting layer of density (to dynamically spatial subsampling

the point cloud). In [38], Subramanyam et al. introduced a tiling-

based approach exploiting user movement to reduce the bit rate for

2

Figure 2: Our research prototype (an Azure Kinect, a Jetson

TX2, and a Pixel 3XL from left to right) for characterizing

real-time PtCl capturing and streaming on mobile devices.

streaming point clouds with user perceptual quality maintained.

DASH can be used as a fundamental component to facilitate real-

time PtCl capturing and streaming on mobile devices.

2.3 Point Cloud Compression

Because of the massive amount of PtCl to be streamed, state-of-

the-art solutions take advantage of compression techniques. For

instance, Google Draco [4] and PCL [21] are two tree-based process-

ing libraries that can compress point clouds by orders of magnitude.

Utilizing these libraries, Han et al. presented ViVo [9], a visibility-

aware mobile volumetric streaming system that dynamically op-

timizes the fetching and rendering of volumetric data during AR

experiences by incorporating visibility-aware optimizations Lee et

al. introduced GROOT [18], a framework that employs PD-Tree

(parallel decodable tree) to remove the data dependency in tree

structure by using octree-breadth bytes and octree-depth bytes.

Despite promising results, these works focus on pre-processing

PtCl offline that has already been captured.

3 RESEARCH PROTOTYPE

To characterize the performance and energy budget for PtCl live-

capturing and streaming on mobile devices, we set up a research

prototype using three off-the-shelf components, consisting of a Mi-

crosoft Azure Kinect sensor [27] to capture PtCl at a high resolution

and precision, an NVIDIA Jetson TX2 development board [29] to

process PtCl as an edge-assistant, and a Google Pixel 3XL [6] to en-

able PtCl visualization and interaction with high user mobility. The

research prototype is shown in Figure 2. Though built around those

three components, this pipeline is generic to other components

such as an Intel RealSense sensor (which also produces depth data

at a high resolution and precision), other edge-computing modules

(no matter faster or slower), and other mobile platforms such as

iOS devices. From capturing to rendering, this prototype can be

divided into three subcomponents, capturing and processing as the

data producer, streaming as the data porter, and rendering as the

data consumer. Operations in this pipeline are shown in Figure 3.

Capturing There are multiple ways to produce PtCl. For instance,

Microsoft Azure Kinect equips a ToF sensor and Intel RealSense

employs a dual-camera system to sense real-world points in mil-

limeters from the camera center in 3D space, with their color values

sensed by the RGB camera module. Although there are many public

point cloud datasets [2, 8], we focus on live capture and streaming.

In our prototype, an Azure Kinect sensor is directly connected to

a Jetson TX2 through a USB interface. We use the Azure Kinect

SDK to capture depth images and color images in the C++ environ-

ment through APIs provided by the Open3D library [42], which is a

popular library for 3D data processing. The Azure Kinect captures

color images in the MJPEG format and supports resolutions ranging

from 720p to 4K. It captures depth images in the DEPTH16 format

and supports various modes, e.g., NFOV or WFOV and unbinned

(1024x1024) or binned (512x512). It supports a frame rate as high as

30 FPS.

Processing To mimic and explore PtCl applications in the edge-

computing context, especially for future deployment under the

commercial 5G environment, we use a less-powerful Jetson TX2

(CPU/GPU equivalent to mobile devices) with higher mobility to

host and process data retrieved from the Kinect sensor. As shown

in Figure 3, generating PtCl consists of decompressing the color im-

age, converting the color image format, transforming depth image

views, and stitching depth and color images. To convert MJPEG

to RGB/YUV, we used two libraries, CPU-based libjpeg-turbo [20]

and GPU-based nvJPEG [28]. Then, we use APIs provided by the

Kinect SDK to transform the depth image to color image view and

generate 3D depth data. To stitch depth and color data, we follow

popular 3D file formats such as PLY, resulting in XYZ and RGB

values for each point that are interpreted as bytes, concatenated,

then stored in an unsigned char buffer. To encode PtCl data, we

use Google Draco.

Streaming To send PtCl, we implement a C++ TCP server that

transmits all the data through a Socket. On the receiving end,

we implement a C# TCP client in the Unity app to retrieve data

iteratively with an arbitrary buffer size of 8192, looping in the

background. PtCl is transmitted from the Jetson TX2 to the Pixel

3XL through a localWiFi connection. Both devices support 802.11ac
standard, with a throughput as high as 867Mbps.

RenderingWe focus on rendering PtCl in AR apps that run on un-

tethered mobile devices, such as a smartphone, a Google Glass [5],

or a Microsoft HoloLens [26]. To conduct experiments, we develop

an app using the Unity game engine [39], which is one of the most

favorable platforms for AR developers and content creators [19]. In

this Unity app, PtCl is first received as byte arrays, then interpreted

into XYZ and RGB values, and finally fed into the main Unity thread

for rendering. To evaluate the capability of today’s mobile devices

when rendering PtCl, we implemented three different methods. The

first implementation naively renders PtCl in the Unity main (single)

thread. The second implementation utilizes CPU multithreading

to divide and process PtCl in chunks. For both CPU-based imple-

mentations, PtCl is drawn in meshes made from points, with the

MeshTopology.Points API. The third implementation offloads all

the data to the on-device GPU with the help of a ComputeBuffer.

3

Figure 3: A sequence of operations performed and monitored in the PtCl capturing and streaming pipeline on our research

prototype.

4 RESULTS

Evaluation workloads Using our research prototype, we cap-

ture the depth image at a frame rate of 15 FPS for two different

resolutions, WFOV 512x512 (binned) and 1024x1024 (unbinned),

which are represented in 2 bytes int16_t. Additionally, we capture

the color image at a frame rate of 15 FPS for two different resolu-

tions, 1280x720 (720p) and 1920x1080 (1080p). Then, we stream PtCl

(720p-binned/unbinned and 1080p-binned/unbinned interpreted as

image resolution-depth resolution) generated from the transformed

depth and color image (to color image view) to the mobile devices.

The amount of data captured and streamed per frame is shown in

Table 2.

Evaluation metricsWe care about app performance and energy

efficiency. Thus, we monitor the latency when performing each

operation within the PtCl capturing-to-rendering pipeline, such

as converting MJPEG to RGB, manipulating buffers, computing

shader, etc., as introduced in §3. Additionally, wemonitor the energy

consumption per frame (calculated as a product of power and frame

rate) on both the Pixel 3XL client and the Jetson TX2 server. On

Jetson TX2, power consumption is read from the power rail sys

files, including SOC, DDR, CPU, GPU, etc. On Pixel 3XL, power

consumption is measured by reading the voltage and current sys

files of the battery. For all experiments, results are averaged across

multiple samples as retrieved during a one-minute period when

running the app.

4.1 PtCl Capturing & Processing

In this stage, we monitor four operations on Jetson TX2: (i) MJPEG

decompression, (ii) format conversion, (iii) view transformation,

and (iv) PtCl generation.

Decompressing MJPEG images at 720p with libjpeg-turbo takes

20ms, followed by another 16ms to convert BGRA to RGB. Mean-

while, with nvJPEG, decompressing MJPEG images takes 16ms,

followed by another 23ms to convert YUV to RGB. Increasing

the resolution to 1080p doubles the latency for both decompres-

sion and conversion for both approaches. On top of these two

latency, transforming depth image to 720p and 1080p color image

view takes 29ms and 42ms for unbinned depth image along with

27ms and 41ms for binned depth image. PtCl generation for 720p-

binned/unbinned takes 15ms; 33ms for 1080p-binned/unbinned.

Draco compression (compression level at 7 and quantization at 11

bits) takes 914ms to encode 720p-binned/unbinned (600K points)

PtCl and 2238ms to encode 1080p-binned/unbinned (1.36M points)

PtCl. The resulting output is one magnitude smaller in file size

compared with the original PtCl containing both XYZ and RGB

values.

In all experiments, we can identify a substantial improvement

in energy efficiency if the system is working at a lower resolution.

For instance, energy consumption per frame of the GPU is 0.89 J
working at 720p-binned, which is 62% less compared against 2.37 J
working at 720p-unbinned and 46% less compared against 1.64 J
working at 1080p-binned. Note that, by reading the I/O power rail

sys file, we find that the power draw from the Kinect sensor is

stable regardless of working at different resolutions.

4.2 PtCl Server→Client Streaming

In this stage, we monitor two operations, the Socket send on Jetson

TX2 and the Socket receive on Pixel 3XL.

The average latency to send the compressed PtCl on Jetson TX2

is 84ms at 720p-binned, 91ms at 720p-unbinned, 257ms at 1080p-

binned, and 274ms at 1080p-unbinned. Accordingly, the average

latency to receive the compressed PtCl on Pixel 3XL is 143ms at

720p-binned, 146ms at 720p-unbinned, 297ms at 1080p-binned,

and 303ms at 1080p-unbinned. In both cases, streaming latency

varies with a high deviation. If sending raw PtCl, the latency is one

magnitude higher.

4.3 PtCl Rendering

Within the Unity app deployed on a Pixel 3XL, we monitor two

operations, PtCl interpretation and rendering. Note that those two

operations are based on the streaming of raw PtCl because of the

high latency to compress it. As discussed in §3, the rendering is

implemented with three different approaches. A comparison of the

latency for each method is shown in Figure 4.

In the naive implementation, interpreting PtCl in the background

TCP client thread takes 127ms at 720p-binned/unbinned and 238ms

at 1080p-binned/unbinned, followed by 128ms and 287ms for data

rendering in the Unity main thread. With the CPU multi-threaded

implementation, spawning 14 threads (each thread responsible for

one mesh object) results in a mere 5ms processing time for each

thread. However, spawning multiple threads incurs latency over-

head. The overall latency is 87ms and 185ms to render PtCl at two

resolutions accordingly. In the GPU ComputeBuffer implemen-

tation, rendering PtCl at two resolutions takes 80ms and 180ms

accordingly. Though PtCl cannot be rendered at real-time on mobile

devices, they can still be rendered on a good GPU machine with

4

Color Image Depth Image PtCl (without transformation) PtCl (transformed to color image view)

720p 1080p Binned Unbinned 720p + Binned 720p + Unbinned 720p + Un/Binned 1080p + Un/Binned

2,764,800 6,220,800 3,145,728 12,582,912 5,910,528 15,347,712 8,285,400 18,662,400

Table 2: The size of the data captured by the sensor and the generated PtCl data per frame (in # of bytes).

CPU-Single CPU-Multithread GPU-Shader
Three implementations to render PtCl

0

50

100

150

200

250

300

La
te

nc
y

in
 m

ill
is

ec
on

ds

720p-Mobile
1080p-Mobile

720p-Desktop
1080p-Desktop

Figure 4: The latency to draw and render PtCl using three

different approaches in the Unity app running on a Pixel 3XL

and on a desktop.

720p25% 720p50% 720p100% 1080p100%
Resolution and percentage of data streamed

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

En
er

gy
 p

er
 fr

am
e

in
 J

Binned Unbinned

Figure 5: The system energy efficiency of interpreting and

rendering PtCl on Pixel 3XL.

real-time performance. Also shown in Figure 4, a laptop with a

RTX-3070 GPU can render PtCl captured at 720p-binned/unbinned

in as low as 21ms and 1080p-binned/unbinned PtCl in 46ms.

Figure 5 shows the energy efficiency result. Interpreting and

rendering PtCl consumes 0.37 J and 0.81 J per frame captured at

720p-binned/unbinned and 1080p-binned/unbinned accordingly.

4.4 Summary

• Latency and energy consumed in each stage of the capturing-

to-rendering pipeline is proportional to the PtCl resolu-

tion; thus, presenting an opportunity to adaptively balance

resolution-based tradeoffs.

• High resolution XYZ representations are more expen-

sive than raw depth data. Transforming raw depth data

into 3D XYZ format (four bytes each) and further into the

color image’s view makes PtCl data magnitudes larger. De-

coupling the processing of color image and depth image is

needed. Furthermore, determining the resolution of PtCl can

be driven by the consumer, e.g., performing format optimiza-

tion based on the requirements of the rendering component,

such as particles.

• Encoding PtCl captured at a high resolution to tree

structure with libraries like Draco on an edge device is

not feasible for real-time performance (at least 30 FPS).

In our experiment, live-encoding with state-of-the-art li-

braries takes seconds to compress raw PtCl captured at a

high resolution (more than 1M points). However, if solely

working on spatial data or reduced amount of PtCl, then

encoding can still be utilized. In addition, an obvious com-

pressing and networking latency tradeoff can be identified

between streaming raw PtCl and compressed PtCl, upon

which the overall throughput in our current prototype is

determined.

• Network would not be the bottleneck to stream PtCl. In

particular, one to twomagnitudes higher throughput (i.e., the

streaming latency will decrease by two magnitudes) brought

by the upcoming 5G technology coupled with advanced

streaming protocols such as DASH can transmit PtCl in real-

time [11, 25, 36].

• Current mobile devices cannot handle unfiltered raw

PtCl even with CPU multithreading and GPU acceleration,

not to mention the high power consumption associated

which will drain the battery on mobile devices very quickly.

4.5 Capturing & Streaming fewer Points

In another set of experiments, we capture, process, stream, and

render only 25% and 50% of the original PtCl, to verify that less PtCl

leads to less processing latency and higher energy efficiency. The la-

tency reduction and energy efficiency improvement are substantial

across all components, proportional to the percentage of data being

processed. For example, even in the single-thread implementation,

rendering 25% of the 720p-binned/unbinned PtCl on Pixel 3XL can

take as low as 40ms with a 0.084 J energy consumption per frame.

As another example, on Jetson TX2, when capturing and sending

25% and 50% of the 720p-binned/unbinned PtCl, the transmission

latency can be less than 1ms after TCP connection is setup due to

the window size negotiation.

5 CONCLUSION

In this work, we built a research prototype with three off-the-shelf

components (anAzure Kinect sensor, a Jetson TX2 board, and a Pixel

3XL smartphone) to study the bottlenecks in real-time dense point

cloud capturing and streaming on mobile devices. The findings

around throughput limitation and data representation motivate

the development of a software system stack to realize user-defined

dense point cloud sensing on mobile devices.

5

REFERENCES
[1] Adobe. 2021. High-quality, network-efficient HTTP streaming.

https://www.adobe.com/products/hds-dynamic-streaming.html.
[2] I. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. Brilakis, M. Fischer, and S. Savarese.

2016. 3D Semantic Parsing of Large-Scale Indoor Spaces. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 1534–1543. https://doi.org/
10.1109/CVPR.2016.170

[3] Cyrus S. Bamji, Swati Mehta, Barry Thompson, Tamer Elkhatib, Stefan Wurster,
Onur Akkaya, Andrew Payne, John Godbaz, Mike Fenton, Vijay Rajasekaran,
Larry Prather, Satya Nagaraja, Vishali Mogallapu, Dane Snow, Rich McCauley,
Mustansir Mukadam, Iskender Agi, Shaun McCarthy, Zhanping Xu, Travis Perry,
William Qian, Vei-Han Chan, Prabhu Adepu, Gazi Ali, Muneeb Ahmed, Aditya
Mukherjee, Sheethal Nayak, Dave Gampell, Sunil Acharya, Lou Kordus, and Pat
O’Connor. 2018. IMpixel 65nm BSI 320MHz demodulated TOF Image sensor with
3um global shutter pixels and analog binning. In 2018 IEEE International Solid -
State Circuits Conference - (ISSCC). 94–96. https://doi.org/10.1109/ISSCC.2018.
8310200

[4] Google. 2021. Draco. https://github.com/google/draco.
[5] Google. 2021. Glass. https://www.google.com/glass/start/.
[6] GSMARENA. 2021. Google Pixel 3 XL. https://www.gsmarena.com/google_

pixel_3_xl-9257.php.
[7] Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan Pillai,

and Mahadev Satyanarayanan. 2014. Towards Wearable Cognitive Assistance.
In Proceedings of the 12th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys ’14). ACM.

[8] TimoHackel, Nikolay Savinov, Lubor Ladicky, Jan DirkWegner, Konrad Schindler,
and Marc Pollefeys. 2017. Semantic3D.net: A new Large-scale Point Cloud
Classification Benchmark. CoRR abs/1704.03847 (2017). arXiv:1704.03847 http:
//arxiv.org/abs/1704.03847

[9] Bo Han, Yu Liu, and Feng Qian. 2020. ViVo: Visibility-Aware Mobile Volumetric
Video Streaming. In Proceedings of the 26th Annual International Conference on
Mobile Computing and Networking (London, United Kingdom) (MobiCom ’20).
Association for Computing Machinery, New York, NY, USA, Article 11, 13 pages.
https://doi.org/10.1145/3372224.3380888

[10] Lei Han, Tian Zheng, Yinheng Zhu, Lan Xu, and Lu Fang. 2020. Live Semantic 3D
Perception for Immersive Augmented Reality. IEEE Transactions on Visualization
and Computer Graphics 26, 5 (2020), 2012–2022. https://doi.org/10.1109/TVCG.
2020.2973477

[11] Chris Hoffman and Craig Lloyd. 2018. The Best (Actually Useful)
Tech We Saw at CES 2018. https://www.howtogeek.com/339206/
the-best-actually-useful-tech-we-saw-at-ces-2018/.

[12] Mohammad Hosseini and Christian Timmerer. 2018. Dynamic Adaptive Point
Cloud Streaming. Proceedings of the 23rd Packet Video Workshop (Jun 2018).
https://doi.org/10.1145/3210424.3210429

[13] Jinhan Hu, Alexander Shearer, Saranya Rajagopalan, and Robert LiKamWa. 2019.
Banner: An Image Sensor Reconfiguration Framework for Seamless Resolution-
Based Tradeoffs. In Proceedings of the 17th Annual International Conference on
Mobile Systems, Applications, and Services (Seoul, Republic of Korea) (MobiSys
’19). Association for Computing Machinery, New York, NY, USA, 236–248. https:
//doi.org/10.1145/3307334.3326092

[14] Jinhan Hu, Jianan Yang, Vraj Delhivala, and Robert LiKamWa. 2018. Char-
acterizing the Reconfiguration Latency of Image Sensor Resolution on An-
droid Devices. In Proceedings of the 19th International Workshop on Mobile
Computing Systems & Applications (Tempe, Arizona, USA) (HotMobile ’18).
Association for Computing Machinery, New York, NY, USA, 81–86. https:
//doi.org/10.1145/3177102.3177109

[15] Intel. 2021. RealSense Depth Camera D435i. https://www.intelrealsense.com/
depth-camera-d435i/.

[16] James Carroll. 2020. Time of Flight sensors target high-speed 3D machine vision
tasks. https://www.vision-systems.com/cameras-accessories/article/14175785/
3d-machine-vision-time-of-flight-tof-sensors-and-high-speed-tasks.

[17] Stefan Lederer, Christopher Müller, and Christian Timmerer. 2012. Dynamic
Adaptive Streaming over HTTP Dataset (MMSys ’12). Association for Computing
Machinery, New York, NY, USA, 89–94. https://doi.org/10.1145/2155555.2155570

[18] Kyungjin Lee, Juheon Yi, Youngki Lee, Sunghyun Choi, and Young Min Kim.
2020. GROOT: A Real-Time Streaming System of High-Fidelity Volumetric
Videos (MobiCom ’20). Association for Computing Machinery, New York, NY,
USA, Article 57, 14 pages. https://doi.org/10.1145/3372224.3419214

[19] Germán Leiva, Cuong Nguyen, Rubaiat Habib Kazi, and Paul Asente. 2020. Pronto:
Rapid Augmented Reality Video Prototyping Using Sketches and Enaction. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems

(Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery, New York,
NY, USA, 1–13. https://doi.org/10.1145/3313831.3376160

[20] libjpeg-turbo. 2021. libjpeg-turbo. https://libjpeg-turbo.org/.
[21] Point Cloud Library. 2021. Point Cloud Library. https://pointclouds.org/.
[22] R. LiKamWa, J. Hu, V. Kodukula, and Y. Liu. 2021. Adaptive Resolution-Based

Tradeoffs for Energy-Efficient Visual Computing Systems. IEEE Pervasive Com-
puting (2021), 1–9. https://doi.org/10.1109/MPRV.2021.3052528

[23] Robert Likamwa, Jinhan Hu, Venkatesh Kodukula, and Yifei Liu. 2021. Adaptive
Resolution-Based Tradeoffs for Energy-Efficient Visual Computing Systems. IEEE
Pervasive Computing 20, 2 (2021), 18–26. https://doi.org/10.1109/MPRV.2021.
3052528

[24] Robert LiKamWa, Bodhi Priyantha, Matthai Philipose, Lin Zhong, and Paramvir
Bahl. 2013. Energy Characterization and Optimization of Image Sensing To-
ward Continuous Mobile Vision. In Proceeding of the 11th Annual International
Conference on Mobile Systems, Applications, and Services (MobiSys ’13). ACM.
https://doi.org/10.1145/2462456.2464448

[25] Zhi Liu, Qiyue Li, Xianfu Chen, Celimuge Wu, susumu ishihara, Jie Li, and
Yusheng Ji. 2020. Point Cloud Video Streaming in 5G Systems and Beyond:
Challenges and Solutions. https://doi.org/10.36227/techrxiv.13138940.v1

[26] Microsoft. 2021. HoloLens 2. https://www.microsoft.com/en-us/hololens.
[27] Microsoft Azure. 2021. Azure Kinect DK. https://azure.microsoft.com/en-us/

services/kinect-dk/.
[28] NVDIA DEVELOPER. 2021. nvJPEG Libraries. https://developer.nvidia.com/

nvjpeg.
[29] NVIDIA DEVELOPER. 2021. Jetson TX2 Module. https://developer.nvidia.com/

embedded/jetson-tx2.
[30] OmniVision. 2021. OV9282. https://www.ovt.com/sensors/OV9282.
[31] Fabio Poiesi, Alex Locher, Paul Chippendale, Erica Nocerino, Fabio Remondino,

and Luc Van Gool. 2017. Cloud-Based Collaborative 3D Reconstruction Using
Smartphones. In Proceedings of the 14th European Conference on Visual Media
Production (CVMP 2017) (London, United Kingdom) (CVMP 2017). Association for
Computing Machinery, New York, NY, USA, Article 1, 9 pages. https://doi.org/
10.1145/3150165.3150166

[32] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. 2016.
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation.
CoRR abs/1612.00593 (2016). arXiv:1612.00593 http://arxiv.org/abs/1612.00593

[33] Feng Qian, Bo Han, Jarrell Pair, and Vijay Gopalakrishnan. 2019. Toward Practical
Volumetric Video Streaming on Commodity Smartphones. In Proceedings of the
20th International Workshop on Mobile Computing Systems and Applications (Santa
Cruz, CA, USA) (HotMobile ’19). Association for Computing Machinery, New
York, NY, USA, 135–140. https://doi.org/10.1145/3301293.3302358

[34] Hang Qiu, Fawad Ahmad, Fan Bai, Marco Gruteser, and Ramesh Govindan. 2018.
AVR: Augmented Vehicular Reality. In Proceedings of the 16th Annual International
Conference on Mobile Systems, Applications, and Services (Munich, Germany)
(MobiSys ’18). Association for Computing Machinery, New York, NY, USA, 81–95.
https://doi.org/10.1145/3210240.3210319

[35] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. 2017. OctNet: Learning
Deep 3D Representations at High Resolutions. arXiv:1611.05009 [cs.CV]

[36] Traci Ruether. 2021. The Impact of 5G on Streaming. https://www.wowza.com/
blog/the-impact-of-5g-on-streaming.

[37] Sabbir Rangwala. 2020. The iPhone 12 - LiDAR At Your Fin-
gertips. https://www.forbes.com/sites/sabbirrangwala/2020/11/12/
the-iphone-12lidar-at-your-fingertips.

[38] Shishir Subramanyam, Irene Viola, Alan Hanjalic, and Pablo Cesar. 2020. User
Centered Adaptive Streaming of Dynamic Point Clouds with Low Complexity
Tiling. In Proceedings of the 28th ACM International Conference on Multimedia
(Seattle, WA, USA) (MM ’20). Association for Computing Machinery, New York,
NY, USA, 3669–3677. https://doi.org/10.1145/3394171.3413535

[39] Unity. 2021. The leading platform for creating interactive, real-time content.
https://unity.com/.

[40] Tai Wang, Xinge Zhu, and Dahua Lin. 2020. Reconfigurable Voxels: A New
Representation for LiDAR-Based Point Clouds. arXiv:2004.02724 [cs.CV]

[41] Jun Yi, Md Reazul Islam, Shivang Aggarwal, Dimitrios Koutsonikolas, Y. Charlie
Hu, and Zhisheng Yan. 2020. An Analysis of Delay in Live 360° Video Streaming
Systems. In Proceedings of the 28th ACM International Conference on Multimedia
(Seattle, WA, USA) (MM ’20). Association for Computing Machinery, New York,
NY, USA, 982–990. https://doi.org/10.1145/3394171.3413539

[42] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. 2018. Open3D: A Modern Library
for 3D Data Processing. arXiv:1801.09847 (2018).

[43] Yin Zhou and Oncel Tuzel. 2018. VoxelNet: End-to-End Learning for Point Cloud
Based 3D Object Detection. In 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 4490–4499. https://doi.org/10.1109/CVPR.2018.00472

6

