Rhythmic Pixel Regions: Multi-resolution Visual Sensing System
towards High-Precision Visual Computing at Low Power

Venkatesh Kodukula
Arizona State University
Tempe, AZ, USA
vkodukul@asu.edu

Srinivas Lingutla
Arizona State University
Tempe, AZ, USA
slingutl@asu.edu

ABSTRACT

High spatiotemporal resolution can offer high precision for vision
applications, which is particularly useful to capture the nuances of
visual features, such as for augmented reality. Unfortunately, cap-
turing and processing high spatiotemporal visual frames generates
energy-expensive memory traffic. On the other hand, low resolu-
tion frames can reduce pixel memory throughput, but reduce also
the opportunities of high-precision visual sensing. However, our
intuition is that not all parts of the scene need to be captured at a
uniform resolution. Selectively and opportunistically reducing reso-
lution for different regions of image frames can yield high-precision
visual computing at energy-efficient memory data rates.

To this end, we develop a visual sensing pipeline architecture
that flexibly allows application developers to dynamically adapt
the spatial resolution and update rate of different “rhythmic pixel
regions” in the scene. We develop a system that ingests pixel streams
from commercial image sensors with their standard raster-scan
pixel read-out patterns, but only encodes relevant pixels prior to
storing them in the memory. We also present streaming hardware
to decode the stored rhythmic pixel region stream into traditional
frame-based representations to feed into standard computer vision
algorithms. We integrate our encoding and decoding hardware
modules into existing video pipelines. On top of this, we develop
runtime support allowing developers to flexibly specify the region
labels. Evaluating our system on a Xilinx FPGA platform over three
vision workloads shows 43 — 64% reduction in interface traffic and
memory footprint, while providing controllable task accuracy.

CCS CONCEPTS

« Computer systems organization — Special purpose systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPLOS 21, April 19-23, 2021, Virtual, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8317-2/21/04...$15.00
https://doi.org/10.1145/3445814.3446737

Alexander Shearer
Arizona State University
Tempe, AZ, USA
acshearl@asu.edu

Yifei Liu
Arizona State University

Tempe, AZ, USA
yliu740@asu.edu

573

Van Nguyen
Arizona State University
Tempe, AZ, USA
vinguyl9@asu.edu

Robert LiKamWa
Arizona State University
Tempe, AZ, USA
likamwa@asu.edu

KEYWORDS

visual computing, augmented reality, pixel discard

ACM Reference Format:

Venkatesh Kodukula, Alexander Shearer, Van Nguyen, Srinivas Lingutla,
Yifei Liu, and Robert LiKamWa. 2021. Rhythmic Pixel Regions: Multi-resolution
Visual Sensing System towards High-Precision Visual Computing at Low
Power. In Proceedings of the 26th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS
'21), April 19-23, 2021, Virtual, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3445814.3446737

High detail,
fast moving object
N
N il I oy ey
NN 39
YIS T Y‘ 31"’0 ,“ y‘o‘)
S YN A~ R BSECEL)
_ S| - Low detail,] |_=~"Low detail,
t T static object 1 Slow moving object
(a) Frame-based (b) ROI-based (c) Rhythmic pixels

Figure 1: Traditional frame-based computing captures and
processes entire frames. ROI-based computing samples re-
gions of interest, but at uniform spatial and temporal res-
olution. With rhythmic pixel regions, different regions are
captured at different spatio-temporal resolutions.

1 INTRODUCTION

Through the lens of their cameras, mobile devices can visually
observe a user’s environment for detecting faces, understanding
spatial scene geometry, and capturing images and videos. This has
yielded a wide range of benefits, especially as image sensors have
grown to support increasingly higher resolutions and frame rates.
With such precision, it is now possible to position augmented reality
(AR) overlays over users’ faces or spatial living environments for
social entertainment. Virtual AR media can also annotate physical
environmental surfaces, including for navigational guidance for
walking directions [14]. Wirelessly connected camera devices on
the Internet-of-Things can provide home security, such as through
video doorbells.

Unfortunately, visual systems on mobile systems are limited in
their spatial precision, computational performance, and energy effi-
ciency while performing continuous visual tasks. Mobile systems

https://doi.org/10.1145/3445814.3446737
https://doi.org/10.1145/3445814.3446737

ASPLOS 21, April 19-23, 2021, Virtual, USA

Venkatesh Kodukula, Alexander Shearer, Van Nguyen, Srinivas Lingutla, Yifei Liu, and Robert LiKamWa

Table 1: Opportunities for Rhythmic Pixel Regions

Traditional uniform frame-based vision

Rhythmic pixel region-based vision

Spatial Resolution

If any part of the frame needs to be captured at a high reso-
lution, e.g., to resolve complex texture or distant objects, the
entire frame will need to be captured at a high resolution.

Regions with small, detailed, and/or distant features can be
captured with the precision of high resolution. Frame regions
with large, static, close visual features can be captured with
the efficiency of low resolution.

Temporal Resolution

If any part of the frame needs to be captured at a high frame
rate, e.g., to track substantial motion, the system will need to
capture a sequence of entire frames of pixels at high frame

Regions can be captured at different intervals. The entire frame
can be scanned to update spatial understanding at a lower rate,
e.g., 1 fps. Regions of moving objects/surfaces can be captured

rate.

at higher rates, e.g., 60 fps.

are constrained by their small form factors with limited battery
sizes and heat management requirements. To reduce the power con-
sumption, recently proposed systems reduce the spatial resolution
and frame rate of image capture [19, 22] to receive commensurate
energy savings, especially by reducing the memory traffic of the
DRAM-based frame buffers. Thus, resolution provides a tradeoff
mechanism to dynamically configure systems for low power con-
sumption or high visual task fidelity. However, downscaling or
windowing a frame forces the application to reduce the resolution
of the entire frame. Reducing the frame rate similarly reduces the
temporal resolution of the entire frame stream. This reduced spa-
tiotemporal resolution across the entire frame stream can lead to
suboptimal visual precision.

This work aims to improve the capabilities of continuous mobile
vision systems, based on a key insight: The precision, performance,
and efficiency of visual computing systems are limited by the current
pattern of capturing and processing entire image frame streams at
uniform spatial resolutions and uniform frame rates. This assump-
tion of frame-based computing (Fig. 1a) presents an inflexibly coarse
granularity of tradeoff between task accuracy and energy efficiency.
Most natural scenes do not have the same resolution needs across
the entire image frame. Precise AR placement requires high spatial
resolution for visual features on tracked surfaces, but would suffice
with a relatively lower resolution for the rest of the frame. The de-
tection and tracking of faces, hands, and objects could use a higher
temporal resolution to capture quick motions, while the rest of a
relatively static scene would suffice with a lower frame rate. Such
tradeoffs are unavailable with the current model of frame-based
computing.

To address this, we present a fundamental shift away from
frame-based visual computing and towards rhythmic pixel re-
gions (Fig. 1c), which we define as neighborhoods of pixels with
region-specific spatiotemporal resolutions. Unlike visual comput-
ing based on a few Regions-of-Interest (ROIs) [21], rhythmic pixel
regions leverage encoded data representations that scalably allow
for the capture of hundreds of regions, with independently defined
spatiotemporal resolutions. By supporting the simultaneous cap-
ture of a diversity of rhythmic pixel regions, our visual computing
architecture allows the developer to selectively specify regions
where higher spatiotemporal resolution is needed and where lower
spatiotemporal resolution will suffice (Table 1), e.g., dynamically
guided by the properties of the visual features. The fine-grained
configurability will allow developers to extend their existing visual
computing algorithms and applications for high energy efficiency.
This creates the illusion of high spatiotemporal resolution capture

574

at low power consumption by eliminating the wasteful DRAM
traffic of unproductive pixels.

To design the rhythmic pixel region abstraction and the architec-
ture to support it, we introduce two hardware sensor data interfaces:
an encoder to selectively reduce sets of pixels before they are stored
in memory, and a decoder to reconstruct the pixels from memory
into traditional frame-based addressing for standard application
use. Together, the rhythmic pixel region encoder and decoder work
to reduce the significant DRAM traffic of writing and reading visual
data, leading to system energy savings. These interfaces, which
integrate into the System-on-Chip, support existing and future high-
resolution image sensors, allowing for a revolutionary upgrade to
evolutionary mass-market-scale image sensors.

To evaluate our system, we design our implementation on a Xil-
inx ZCU102 FPGA SoC platform. We support various visual work-
loads, including hardware-accelerated neural network processing
for face and object tracking, and OpenCV-based visual simultaneous
localization and mapping (V-SLAM). Through our evaluation, we
demonstrate the opportunity of rhythmic pixel regions to decrease
pixel memory traffic by 43 — 64% while only minimally degrading
the visual task accuracy, e.g., only increasing absolute trajectory
error of V-SLAM from 43 + 1.5 mm to 51 + 0.9 mm in our case
study. Through reduction in memory traffic, rhythmic pixel region
based techniques can significantly increase the energy-efficiency
of battery-backed mobile systems.

In summary, we make the following contributions:

e To the best of our knowledge, we are the first to propose
a visual computing paradigm where different parts of the
scene are captured at different spatiotemporal resolutions —
before the frame enters memory — for overall system energy-
efficiency while respecting task needs.

We develop two lightweight and scalable IP blocks — rhythmic

pixel encoder and decoder — which decimates the incoming

pixel stream while writing to memory and reconstructs the
pixel stream on-the-fly while reading from memory.

We develop a library and runtime to coordinate vision tasks

with encoder/decoder operation.

e We augment our architecture and runtime support on top of
an existing commercial mobile vision pipeline built around a
FPGA platform. We evaluate the augmented architecture on
a variety of vision tasks to demonstrate significant reduction
in memory traffic with controllable accuracy loss.

Rhythmic Pixel Regions: Multi-resolution Visual Sensing System towards High-Precision Visual Computing at Low Power

2 BACKGROUND AND RELATED WORK

A primer on vision pipelines: The ecosystem of visual computing
sensors, devices, systems, and algorithms on mobile devices have
rapidly evolved to provide high-performance platforms for mul-
titude of vision tasks such as augmented reality on smartphones,
tablets, and headsets [18].

Image sensors collect digital readings of visual pixels in a frame [38].
The sensor sends values over a streaming MIPI interface, which
enacts a serial transmission over multiple lanes [30]. The MIPI re-
ceiver inside the SoC receives the frame information from camera.
In the sensor or on the system-on-chip, there is often an image
signal processor (ISP) inserted into the visual computing pipeline,
performing image improvement operations, e.g., white balance, and
format changes, e.g., YUV conversion. Regardless of the placement
and operation of the ISP, the visual hardware pipeline eventually
writes the frame into DRAM and signals to the operating system
that a frame is ready for readout from the memory.

Data movement across the off-chip MIPI and DDR interfaces
entails significant energy consumption [12]. While tasks such as
AR could significantly benefit from high spatiotemporal resolutions,
e.g., 4K at 60 fps, these resolutions generate high datarates across the
camera and memory interfaces. For example, the system expends
2.8 nJ to move a pixel [17, 24, 27, 35, 36] across the DDR interface,
whereas it expends only 4.6 pJ for performing a multiply-and-
accumulate (MAC) operation [16] around that pixel.

For AR, the software processes the frame through visual com-
puting frameworks, extracting visual features to feed into SLAM
algorithms [31]. These algorithms form a spatial understanding of
the scene to estimate the pose of the camera. The pose of the virtual
camera is precisely updated to the estimated pose of the physical
camera. This allows the system to overlay virtual objects over the
physical environment, achieving the AR illusion.

Multi-ROI sensors: Many image sensors are capable of se-
lecting a region-of-interest (ROI) for readout [49]. There are also
sensors that allow for multiple ROIs to be read out [39]. As region
selection is performed at the sensor level, it offers efficiency and
speed by reducing sensor readout time. However, there are sig-
nificant limitations to adopting these sensors for mobile systems.
In particular, the expressiveness of sensor-based region selection
is limited by the footprint of additional circuitry. For example, in
one such sensor, the region selection is limited to 4 regions, re-
gions cannot overlap, and only full resolution and frame rate are
available [49]. In contrast, our support for rhythmic pixel regions
provides extensive configurability and composability through the
inherent scalability of the encoded data representation. This al-
lows a much larger number of regions (hundreds), and grants each
region independent resolution and rhythm/interval control. More-
over, we implement region selection in the SoC, which allows any
conventional image sensor to employ multi-ROI benefits, including
emerging high resolution and high framerate sensors.

Event-driven cameras: Event-driven cameras, also known as
dynamic vision sensors, focus their sampling on pixels that change
their value [11]. This allows for a significant reduction in sensor
bit rate and allows microsecond time resolution. However, the
circuitry is spatially expensive due to per-pixel motion detection
module, reducing frame resolution, e.g., to 128 x 128 pixels. This

575

ASPLOS 21, April 19-23, 2021, Virtual, USA

limits the scalability of these sensors to support high resolutions.
More fundamentally, the logic of deciding what pixels to read out
is limited at hardware design time, disallowing high-level and/or
semantic knowledge from governing the pixel selection process.
Thus, while our work shares similar motivations and inspirations —
reducing data rate for efficiency and performance — we uniquely
allow the expressive ability to dynamically use knowledge of visual
feature extraction needs to selectively sample pixels as needed.

Image/Video Compression: Decades of work in image process-
ing has gone towards compressing images and videos to reduce the
bit rate of storing and transmitting media. Many of these techniques
are inspiring to this work. For example, JPEG and other image com-
pression standards reduce information at spatial frequencies with
less perceptual priority [38]. MPEG-H Part 2 / HEVC / H.265 reduce
redundant information by leveraging estimated motion information
from frame-to-frame [20]. However, such entropy-coding compres-
sion techniques require the frame — or multiple copies of the frame -
in memory before compression can be done. This incurs the memory
overhead of visual computing that rhythmic pixel regions strives
to avoid; we perform encoding before the frame enters the DRAM.
Traditional video codecs also employ sophisticated techniques such
as discrete cosine transform (DCT) and motion compensation for
data reduction, increasing their design complexity. In contrast, we
use simple pixel discard based strategy for data reduction.

Foveated Rendering: To improve graphical rendering capabili-
ties under limited computing resources, foveated rendering focuses
rendering effort where users are likely to notice. Foveated render-
ing [43] uses eye tracking to estimate user gaze and renders content
near the gaze target at higher spatial resolutions. We apply similar
motivation, increasing spatiotemporal resolution where it is needed,
but with a distinctly different goal: to only capture necessary visual
information. Among other differences, our work involves multiple
simultaneous regions, as opposed to the singular region in foveated
rendering.

Flexible spatio-temporal sampling algorithms: Computer
vision researchers propose different algorithms that modulate dif-
ferent regions in an image with different spatio-temporal resolu-
tions for computational photography and video prediction use-
cases. Flexible voxels [15] proposes an efficient space-time sam-
pling scheme that enables per-pixel temporal modulation and a
motion-aware reconstruction scheme for artifact-free videography.
More advanced techniques [37] have been proposed for space-time
sampling and interpolation for video compressive sensing and high-
speed imaging.

More recently, researchers proposed neural networks [23] to
generate high frame rate videos from low frame rate counterparts.
These networks analyze spatiotemporal patterns across frames in a
video to create interpolated frames. While we use similar spatiotem-
poral sampling mechanisms, we focus on providing the architecture
and runtime support to enable spatiotemporal rhythmic capture on
an embedded system.

Energy-efficient visual systems To reduce energy consump-
tion and bandwidth utilization, some systems offload only inter-
esting frames to the cloud, discarding the rest [6]. Determining
which frames to discard itself is often an expensive task. To this
end, other systems [32] implement a dedicated hardware/software
subsystem using an array of gating sensors and imagers. Other

ASPLOS 21, April 19-23, 2021, Virtual, USA

Encoded frame

112(6]7[13

Original frame 15/18(20
0.2.4.6 Decoder

Decoded frame

1 2 3 4 5 Rhythmic
616|789 10—Exe|
11[12[1314}15
16/1 11811920

Past Enc. frames
Per-row offsets
EncMasks

Region labels

(a) Ilustrative representation of dataflow
Encoded frame

Original frame Decoded frame
—

Rhythmic
Pixel
Decoder

EncMask

L]
4
ol

(b) Experimental example data with ORB-SLAM-based regions

Past Enc. frames
Per-row offsets
EncMasks

Figure 2: The process of encoding and decoding. The encoder
packs pixels within the regions from the original image,
maintaining raster-scan order. The decoder reconstructs data
from the encoded frame, per-row offsets, and encoding mask.

hardware-software co-design techniques reuse computation for
energy-efficient visual computing. Euphrates [51] reuses the mo-
tion vector information from the ISP to extrapolate bounding box
results for object detection to avoid extraneous vision processing
on certain frames. EV A [4] exploits temporal redundancy between
frames and uses motion compensation techniques to approximate
CNN results. ASV [10] applies stereo-specific algorithmic and com-
putational optimizations to increase the performance with mini-
mum error rate. Instead of approximating computation, our work
primarily focuses on reducing the memory traffic of sensing by
discarding pixels early in the vision pipeline. As such, rhythmic
pixel regions can be complementary to the aforementioned visual
processing techniques, with approximate computing filling in the
visual gap of unsampled pixel data.

3 VISUAL COMPUTING WITH RHYTHMIC
PIXEL REGIONS

The overarching concept of rhythmic pixel regions is to encode
visual information captured by conventional sensors such that
the encoded visual data: (i) meets real-time visual requirements
specified by application developers, (ii) reduces the pixel memory
throughput and footprint of pixel stream data into DRAM, and (iii)
can be reconstructed into visual frames for application usage. Here,
we introduce key data structures that specify the region labels,
the encoded pixels, and associated meta-data, and how these data
structures are used to perform pixel sampling and interpolation
to satisfy visual needs. We also illustrate the effect of this new
paradigm on a case study based on visual SLAM.

Venkatesh Kodukula, Alexander Shearer, Van Nguyen, Srinivas Lingutla, Yifei Liu, and Robert LiKamWa

g T 0.06 T

; 0.3 — W

& I €0.04 l 1

g <

° 0.2 E

g 01 <0.02

Zo.

O.10 0 0.00,

; ““Frame-based Rhythmic Pixels " “Frame-based Rhythmic Pixels
Computing Computing

(a) Pixels captured (b) Absolute Trajectory Er-

ror

Figure 3: For ORB-SLAM, rhythmic pixel regions can discard
irrelevant pixels early in the pipeline for memory efficiency,
while preserving relevant regions at sufficient resolutions
for accuracy.

3.1 Developer-Specified Region Labels

To mark the regions to be captured, as well as their spatiotemporal
qualities, the system allows developers to specify a set of region
labels (Fig. 2a) to define a capture workload. Each region label in-
cludes the following attributes:

- The coordinates of the top-left corner of the region

- The width and height of the region

- The stride resolution of the region, i.e., the density of pixels

- The skip rate, i.e., the time interval of consecutive sampling

We do not yet support movement, resize, or other temporal dynam-
ics of regions in this work.

3.2 Encoded Frame

The encoder uses the region labels to selectively store a reduced set
of pixels into memory, forming the encoded frame. Pixels within
any of the region labels are stored in original raster-scan order,
while omitting any pixels that do not fall within regions, or are
not within the rhythm of the stride or skip. This results in a tightly
packed encoded frame (Fig. 2a).

Notably, traditional ROI-based computing typically adopts a dif-
ferent memory representation, storing each region of pixels as a
grouped sequence in memory. For the small number of regions
that ROI-based computing typically supports, this may suffice, but
when scaled to hundreds of regions, this creates unfavorable ran-
dom access patterns into DRAM and/or buffering of large portions
of the frame into local SRAM when writing pixels into memory. Fur-
thermore, overlapping regions will duplicate the storage of pixels
that appear in multiple regions. Instead, by preserving raster scan
order, the rhythmic encoded frame representation instead retains
sequential write patterns. This allows for highly efficient scalability
to raised number of regions with minimal resource overhead.

3.3 Metadata: Per-Row Offset, Encoding Mask
(EncMask)

To service pixel requests from the vision applications, the decoder
will need to translate pixel addresses in the original frame into
pixel offsets in the encoded frame before retrieving the pixel value.
However, this would limit decoder scalability, as the complexity of
the search operation quickly grows with additional regions.

Thus, instead of using region labels, we propose an alternative
method that uses two forms of metadata for the decoder to recon-
struct the original pixel stream (Fig. 2a).

Rhythmic Pixel Regions: Multi-resolution Visual Sensing System towards High-Precision Visual Computing at Low Power

First, a per-row offset counts the number of encoded pixels prior
to that row in the image. Second, an encoding sequence bitmask
(EncMask) helps the decoder to reconstruct a pixel stream with-
out the need for region labels. For each pixel in the original (pre-
encoding) frame, the EncMask uses a two-bit status that indicates
how a pixel is sampled in space and time:

N (00): Non-regional pixel

St (01): Regional pixel but strided
Sk (10): Regional pixel but temporally skipped

R (11): Regional pixel
Together, the per-row offset and EncMask allow the decoder to
find the relevant pixel address in the encoded frame, and access
the appropriate values from the current encoded frame or previous
encoded frames to decode the pixel. We provide more information
about this process in Section 4.2.

34 A Case Study around ORB-SLAM

ORB-SLAM [31] is a popular real-time V-SLAM algorithm, highly
centered around tracking visual “features”, creating a map of local-
ized features, and finding matches to previously mapped features
for continual positioning. Visual features — key for scene under-
standing — are scattered throughout a scene and carry different
spatiotemporal needs. While running ORB-SLAM for augmented
reality, for example, the feature extractor routinely detects several
hundreds of features (e.g., 1500 features in a 1080p frame) at vary-
ing distances from the camera. This motivates the need to sample
hundreds of regions around hundreds of features with need-specific
resolutions. Features can be grouped into a smaller number of re-
gions, but this reduces task accuracy and memory efficiency, as we
demonstrate in §6.

In the context of rhythmic pixel regions, ORB features will be
located in the decoded pixel streams. Regions covering the entire
frame can be captured at a slower skip rate to maintain coverage
of features as the device moves around the space. In between full
captures, detected features in both full and partial captures can
guide region label selection for the subsequent frame, defining
regions around feature locations and with properties based on
feature characteristics. Specifically, our policy uses the feature’s
“size” attribute to guide the width and height of the region. Along
similar lines, it uses other feature attributes such as “octave” for
stride and feature movement between frames for temporal rate.
The encoder uses these feature-based region labels to selectively
store pixels of interest and metadata into memory. The decoder
uses these to reconstruct the frames for the algorithm to access and
use for ORB-SLAM and further region selection.

We evaluate the efficacy over the TUM dataset [40] of 480p
videos, capturing full frames every 10 frames and feature-based
regions for other frames. As shown in Fig. 3, we find that using
rhythmic pixel regions can eliminate the memory storage of 66% of
the pixels of the original stream, while only increasing absolute tra-
jectory error from 43 + 1.5 mm to 51 + 0.9 mm. We further explore
the applicability of rhythmic pixel regions to visual workloads in
our evaluation.

4 DESIGN

The rhythmic pixel region architecture centers around the idea of: (i)
encoding pixel streams to reduce the pixel data stored in memory,

577

ASPLOS 21, April 19-23, 2021, Virtual, USA

Sensor VPU/CPU/GPU
)) P i
interface !
!
Rhythmic Rhythmic .
- Pixel Pixel 1
Region1 Encoder Decoder '
labels | H
1 1 1 1
! DMA DDR :
: controller controller |
| 1 f i
1 1
1 1
| Encoded Per-row |
: DRAM [framebuffer][SetEEle][offsets] :
1 1
)

Figure 4: System design. The rhythmic encoder decimates
the incoming pixel stream from camera and encodes only
region-specified pixels into memory. The rhythmic decoder
decodes the pixels for use with the vision algorithms.

and (ii) decoding the pixel streams for vision application usage.
Here, we outline the design aspirations that guide our architecture.
We then describe the design of two hardware units — a rhythmic
pixel encoder and a rhythmic pixel decoder — and their integration
with the existing mobile SoC vision pipeline, as shown in Fig. 4. We
also discuss the software runtime for vision application developers
to leverage these hardware extensions through policy specification.

Design aspirations: We set four goals that guide the design of
our hardware and software extensions.

o Lightweight: Our encoding/decoding techniques should be
lightweight (unlike traditional video codecs) so that they can
be designed and integrated with minimal resource overhead.

e Scalable: Our system should scale to support the capture of
many regions with minimal resource overhead.

e Memory friendly: Our hardware extensions should perform
encoding/decoding tasks with efficient memory access pat-
terns and minimal DRAM traffic

o Flexible: Our runtime should allow developers to flexibly
and independently specify resolution and update rate needs
on a per-region basis.

4.1 Rhythmic Pixel Encoder Architecture

The rhythmic pixel encoder module, shown in Fig. 5, intercepts
the incoming pixel stream from an image sensor pipeline and uses
developer-specified region labels to encode pixels into an encoded
frame. The encoder also generates associated metadata (per-row
offset is a count of the number of regional pixels in a row, and
EncMask is the output of the region comparison process), which is
stored with the encoded frame in DRAM. The app specifies region
labels using the designed runtime support in Section 4.3.

We design our encoder as a fully streaming based module that
avoids the need for partitions to store individually addressed re-
gions. Instead, our encoder directly operates on a dense raster-scan
based pixel stream, produces a sparse encoded stream based on the
region labels, and writes the encoded stream to the DRAM, all with
on-the-fly streaming operation.

4.1.1 Raster-Scan Optimized Sampling: The sampling block oper-
ates on the pixel stream and decides whether to sample a pixel in
space and time based on whether the pixel is in any of the regions

ASPLOS 21, April 19-23, 2021, Virtual, USA

Memory mapped |, Y-sorted region label list
registers Rol selector
Select region labels where

Once per row row is in y-range
Sequencer Region labels
in y-range
Once per pixel

Comparison engine
N (00): Pixel not in x-range

|Pixe| addr.
Pixel stream Sampler
- —

Figure 5: Encoder intercepts the incoming pixel stream and
only forwards pixels that match the stride and skip specifi-
cations of any region.

of any region N Counter
St (01): Strided
Sk (10): Skipped Reser |DEr-row offsets
R (11): Regional
— EncMasks | Metadata

Regional pixels rEncoded
frame

or not. A naive approach could sequentially compare a pixel’s lo-
cation against every region label. This would be time consuming
and would hinder pipeline performance. Although parallelizing the
region label checking process would solve performance issues, we
find that this exponentially increases the number of resources to
support more regions, limiting encoder scalability.

Instead, our approach is to exploit the raster-scan patterns of
the incoming pixel stream to reduce and reuse the work of the
region search. The Sequencer keeps track of row and pixel location.
For a given row, there is a smaller subset regions that are relevant
- where the y-index of the pixel is inside of the y-range of the
region and matches the vertical stride. The Rol Selector performs
this search space reduction, i.e., converting from the region list to
a sublist, once per row. Then, from pixel to pixel, the encoder’s
Comparison Engine only needs to check whether the x-index of
the pixel is inside any of the regions in the sublist and matches the
horizontal stride. As the sublist is much smaller than the original list,
this design choice substantially reduces the level of region-based
parallelism needed for the Comparison Engine, saving hardware
complexity.

In addition, we perform further optimizations for the compari-
son engine based on spatial locality. Within a row, if we find that if
a pixel belongs to a region, the Sampler can apply the same com-
parison result for the next region width number of pixels. We also
simplify the process of finding relevant regions for a row through
sorting the regions by their y-indices. This can be done by the
rhythmic pixel region app runtime.

4.1.2 Integration with ISP Output. The placement of the encoder
has implications on the efficiency of the visual capture. The most
energy-efficient integration of the encoder would be on the sensor
itself, reducing pixel traffic over the sensor interface and potentially
reducing ISP computations. However, this would need a re-design
of the ISP, which conventionally expects pixels in frame-based
ordering in its algorithms. Thus, for this work, we instead integrate
the encoder at the output of the ISP to seamlessly work with existing
commercial ISPs.

As with typical ISP operation, the encoder collects a line of
pixels before committing a burst DMA write to a framebuffer in
the DRAM for efficient and performant memory transaction. Using
a framebuffer allows asynchronous access to frame pixels. In the

578

Venkatesh Kodukula, Alexander Shearer, Van Nguyen, Srinivas Lingutla, Yifei Liu, and Robert LiKamWa

Pixel Memory Management Unit
_________ e ——
1

Memory-mapped
registers
Zol-1 .
z Regional

Px.

Framebuffer!
addr.

.

Index of
1 enc. frame +

Encoded px
request addr.

I Out-of-frame
1 handler

In frame?
1

| Mem.
addr.

lenc. frame

Decoded px

T
<
3
2
Wvyda

request addr

CPU/ VPU/GPU

| Metadata Scratchpad

EncMasks

Response Path/ FIFO Sampling Unit |
Resampling
buffer

I Decoded px.
T] response datg

1
IEncoded px.

[——_ 1 lresponse data
1 FIFO

1
______________________ -

Standard DRAM access

Figure 6: Decoder fulfills pixel requests from the vision app
in two steps. (a) The pixel MMU performs address translation
to fetch the right set of pixel regions from encoded frame.
(b) The FIFO sampling unit reconstructs the original pixel
regions from encoded pixel regions and metadata

case of the rhythmic pixel architecture, the framebuffer also allows
the system to collect multiple frames of data, which the decoder
can use to extrapolate regional pixels over a sequence of frames
for regions with temporal skip rate. The metadata (per-row offset
and EncMask) of the frame is also stored alongside the framebuffer
in DRAM. As the EncMask occupies 2 bits per pixel, we note that
it occupies 8% of the original frame data (e.g., 500 KB for a 1080p
frame). As explored in our evaluation, this amounts to a minimal
memory overhead compared to the memory savings.

4.2 Rhythmic Pixel Decoder Architecture

The rhythmic pixel decoder fulfills pixel requests from the vision
app, which seek groups of sequential pixels from a decoded frame-
buffer. While the app forms its request around pixel locations in the
decoded address space, the decoder uses the metadata and encoded
frames to translate decoded pixel addresses to the DRAM addresses
of the encoded frame pixels. This request path is managed by a
pixel memory management unit (PMMU), as described below and
shown in Fig. 6.

The response path returns the pixel values to the vision appli-
cation through a FIFO Sampling Unit. If required by spatial stride
or temporal skip situations, the FIFO Sampling Unit interpolates
encoded data to create decoded pixel values, which it provides to
the requesting processor. Otherwise, the decoder returns the pixel
value, or a black pixel, if the pixel was not within any of the speci-
fied region labels. As described below, the metadata is used to make
such determinations.

4.2.1 Pixel Memory Management Unit for Pixel Address Transla-
tion: The PMMU works in the same spirit as a traditional memory
management unit (MMU); while MMUs perform virtual to phys-
ical address conversion, our PMMU translates pixel transactions
from decoded to encoded space. Similar to the exception handler
of an MMU, the PMMU’s Out-of-Frame Handler examines a mem-
ory request and determines if it is a valid pixel request, i.e., if the

Rhythmic Pixel Regions: Multi-resolution Visual Sensing System towards High-Precision Visual Computing at Low Power

requested memory address is in the decoded framebuffer address
space. The Out-of-Frame Handler forwards the transaction if it’s
a pixel-based one; otherwise, it will bypass for standard memory
access.

Meanwhile, the Metadata Scratchpad loads the per-row offset
and EncMask information pertaining to the transaction for the four
most recent encoded frames. The Transaction Analyzer analyzes the
EncMasks of the transaction and generates different sub-requests
based on where the encoded pixels are present. Based on the stride
(St) and skip (Sk) values of the EncMask bits, the pixel may be in the
most recent encoded frame, or one of the recently stored encoded
frames. Thus, similar to a virtual memory request, translation of
these pixel requests creates sub-requests that are characterized by
a base address (of the encoded frame), offset (row and column), and
a tag index of which frame hosts the desired pixels.

These sub-requests are fed to a translator. For intra-frame re-
quests, the base address remains the same, whereas for inter-frame
requests, the translator modifies it to the appropriate base address.
The per-row offset is read from the metadata. The column offset is
the count of the number of full regional pixels from the start of the
row until that pixel (The number of “11” entries in the EncMask).
The translator sums this information to generate the new encoded
pixel request corresponding to each sub-request, which will be sent
to DRAM.

4.2.2 FIFO Sampling Unit: A FIFO buffers data packets received
from a pixel-based DRAM transaction. To prepare a pixel value to
service the original request, the engine either dequeues pixel data
from the FIFO, re-samples the previous pixel (in the case of stride),
or samples a black pixel, based on the EncMask. The unpacker also
relays the RLAST control signal to indicate the last transfer in the
transaction for proper handshake with the processing unit for the
memory request.

4.2.3 Integration with DDR Controller. We integrate the decoder
module with the existing DDR controller inside the SoC. By doing
so, the decoder can intercept memory traffic coming from any
processing element and service requests.

4.3 Developer Support for Rhythmic Pixel
Regions

From the point of view of the processing unit — CPU, visual pro-
cessing unit, or GPU - the rhythmic pixel region architecture pre-
serves the addressing scheme of the original frame-based computing
through the decoded framebuffer address. This allows fully trans-
parent use of existing software libraries and hardware accelerators,
with no modification needed.

We develop runtime support to allow the developers to flexibly
specify region labels. This consists of a RegionLabel struct and a
SetRegionLabels() function for developers to set a list of regions.
Region label lists can be set on a per-frame basis or persist across
frames. A runtime service receives these calls to send the region
label list to the encoder.

struct RegionLabel {

int x, y, w, h, stride, skip;
i
SetRegionLabels(list<RegionLabel>);

579

ASPLOS 21, April 19-23, 2021, Virtual, USA

‘m’

Figure 7: With rhythmic pixel regions, policies can define
how different regions in the image can be captured at non-
uniform spatial and temporal resolutions. In this illustrated
policy, regions shaded in black are are not sampled. To track
objects entering/leaving the scene, the system performs a
full-frame capture on a “cycle length” periodicity.

4.3.1 Policy-Based Usage of Rhythmic Pixel Regions. Developers
can build various policies that autonomously guide the region se-
lection, in the similar spirit to issuing frame configurations with
the Frankencamera API [2] or Android’s Camera API [3]. Policies
can incur different system overheads, leading to system trade-offs.
A policy should predict region progression with time as well as
a region quality requirements to maximize task performance. A
feature-based policy (such as that in our case study of Section 3.4)
can use proxies, such as feature scale and feature displacement to
estimate spatial and temporal resolutions of regions. Developers
can also introduce improved application-specific proxies with other
prediction strategies, e.g., with Kalman filters [21].

The process of policy generation and modifying the app around
that policy could be cumbersome for an app developer. To reduce
the burden, we propose two tiers of developers

Policy Makers: The first tier of developers can specialize in policy
development. They can write a wide variety of policies that employ
a feature-based approach and/or sophisticated motion-vector based
techniques, such as those found in Euphrates or EVA? to guide
region selection.

Policy Users: The second tier of developers could select a policy
directly from a pool based on their app needs.

This dichotomy of policy makers/users follows a typical stratified

development paradigm, where high-level developers can simply
employ domain-specific libraries (e.g., cuDNN, cuFFT, cuBLAS) that
are developed to take advantage of architectural complexity (e.g.,
with CUDA) by a different set of low-level developers.
Example policy: As described in the case study, policies can cen-
ter rhythmic pixel regions around features, ensuring that features
are captured at sufficient resolution. We define an example policy
(Fig. 7) around the concept of a cycle length, which is the number
of consecutive frames between two full frame captures. These oc-
casional full frame captures can provide contextual information
of the entire scene at a slower temporal rate, while feature-based
region tracking in the intermediate frames can provide continual
coverage of important regions.

The visual features processed by the app — readily available in
memory — can be used to determine the pixel regions for the next
subsequent frame, centering around the features. For example, as
discussed in §3.4, an ORB feature’s “size” (or scale) attribute [34]
can guide the width and height of its corresponding region, ensur-
ing that the meaningful neighborhood of pixels around the feature
is captured (with extra margin to allow for frame-to-frame fea-
ture displacement). Furthermore, the “octave”[34] attribute, which

ASPLOS 21, April 19-23, 2021, Virtual, USA

Table 2: System components in the video pipeline

Component Specification

Camera Sony IMX274, 4K @ 60 fps

ISP Demosaic and Gamma correction, 2 Pixels Per Clock
CPU ARM Cortex-A53 quad-core

GPU ARM Mali-400 MP2

NPU Deephi DNN co-processor

DRAM 4-channel LPDDR4, 4 GB, 32-bit

describes the texture of the feature, can determine the stride (res-
olution) parameter for each region. Through the displacement of
matched features from frame to frame and measuring the displace-
ment, the system can estimate the movement of a region. The policy
can use this feature velocity to determine the temporal rate param-
eter of pixel regions, sampling fast moving regions more frequently
and slow-moving regions less frequently.

We use and adapt this example policy to various visual workloads
in our implementation and evaluation. We evaluate different cycle
lengths, finding that as the cycle length increases, system efficiency
improves, but the errors due to tracking inaccuracy also accumulate,
and vice-versa. Cycle length thus becomes an important parameter
to govern the tradeoff to meet application needs. The cycle length
could also be adaptive, for example, by using the motion in the
frame or other semantics to guide the need for more frequent or less
frequent full captures. We envision that future policies developed
by a wider community of policy makers could substantially improve
the opportunities of rhythmic pixel regions.

5 IMPLEMENTATION

5.1 FPGA-Based Encoder and Decoder
Integration

Platform: We use Xilinx’s reVISION stack platform [45] which
implements a end-to-end video pipeline that emulates a standard
mobile embedded vision pipeline. As shown in Table 2, we use
Sony’s IMX274 camera, a mobile class imager used in many smart-
phones for high fidelity capture, i.e., 4K @ 60fps. For the ISP, we use
Xilinx’s IP modules for performing demosaicing, gamma correction,
and color-space conversion. These ISP blocks operate at a through-
put of 2 pixels per clock for real-time performance. The processing
subsystem comprises heterogeneous set of computing elements,
similar to a mobile SoC. Specifically, the device contains an ARM
Cortex-A53 quad-core CPU and an ARM Mali-400 MP2 graphics
processing unit (GPU). In addition, we integrate a Deephi DNN
co-processor [48] into the FPGA fabric to emulate a neural network
accelerator. Finally, the entire system is provisioned with 4 GB
LPDDR4 DRAM in the processing subsystem, which we partially
leverage for frame buffer capacity. The fully functional pipeline de-
livers real-time performance of up to 60 fps for video pass-through
and up to 30 fps for certain vision tasks, such as face detection. We
build our system around Xilinx’s reVISION platform [45], which
implements an end-to-end video pipeline with major components
shown in Table 2.

Encoder and Decoder: We design our encoder IP module with
Vivado HLS as a fully-streaming block with AXI-stream interfaces.
In our encoder, input/output buffers are FIFO structures with a

580

Venkatesh Kodukula, Alexander Shearer, Van Nguyen, Srinivas Lingutla, Yifei Liu, and Robert LiKamWa

Table 3: Vision tasks and benchmarks

Task Algorithm Resolution Benchmark #Frames
Visual ORB- 4K@ In-house 6000
SLAM SLAM2 [31] 30 fps dataset

Pose 720p@ PoseTrack

estimation PoseNet [3] 30 fps 2017 3792
Face R SVGA@ ChokePoint

detection RetinaNet [1] 30 fps dataset 22099

depth of 16. We find that this depth is enough to meet the 2 pixel-
per-clock performance to match ISP performance and to avoid any
pipeline stalls.

We also design our decoder with Vivado HLS, utilizing AXI
memory-mapped interfaces on the input and output for integration
with controllers and processing units. Our decoder operates within
the timing budget without introducing extra latency. Both encoder
and decoder functionally work in HLS simulations and the entire
video pipeline passes Vivado FPGA post-layout timing. In addition
to the hardware decoder, we design a software decoder using C++
and OpenCV. The software decoder runs in real-time for a 1080p
video stream.

As Xilinx packages the system DDR controller as a part of its
Zynq CPU IP module, we could not integrate the decoder between
the DDR controller and the xPU as shown in Fig. 4. Instead, we
integrate our decoder as a memory-mapped peripheral slave to
Zynq SoC. In this integration, the system passes the pointers to
the encoded frame and metadata to the decoder to reconstruct the
original frame.

5.2 Runtime

Our runtime comprises a standard software stack with a user-space
API, a kernel-space driver, and a set of low-level physical registers.
We implement region parameters as registers in the encoder/de-
coder modules inside the SoC. Upon invoking any setter function
from the application, the user-space API passes parameters to the
kernel-space driver. The driver then writes these parameters to
the appropriate registers in the hardware units over an AXI-lite
interface.

5.3 Workloads

We study three widely-used vision tasks: (i) Visual SLAM, deter-
mining camera position with respect to its surroundings while
constructing the map of surroundings. (ii) Human pose estimation,
tracking person movement. (iii) Face detection, tracking faces over
time. For each task, as shown in Table 3, we choose state-of-the-
art algorithms with different input, memory, and computational
requirements.

Notably real-time performance of the V-SLAM workload is not
attainable on the FPGA’s CPU due to the compute-intensive na-
ture of ORB-SLAM2. Therefore, we resort to a simulation-based
approach where we run the V-SLAM workload on a desktop com-
puter, generate the region labels, and feed them to the encoder. That
said, there are commercial V-SLAM IP cores [9, 41] available in the
market that offer real-time performance. We plan to integrate them
into our FPGA platform for future studies.

Rhythmic Pixel Regions: Multi-resolution Visual Sensing System towards High-Precision Visual Computing at Low Power

Benchmarks: We use popular publicly available benchmarks
for each of these tasks to evaluate their accuracy. Each of these
datasets comprise videos with different visual attributes, includ-
ing illumination variation and occlusion that mimic the real-time
scenarios in the wild. In addition, these videos cover a wide range
of settings, e.g., indoor/outdoor, crowded/dispersed, and fast/slow
motion of objects making them realistic candidates for evaluating
rhythmic pixel regions.

To evaluate the potential of rhythmic pixel regions on high-
precision visual computing, we also evaluate visual SLAM on a
4K dataset. Since there are no ready-made 4K datasets available
for visual SLAM, we create a dataset of 6000 frames spanning a
total of 7 indoor video sequences with varying user movement.
For portability, we use the 4K camera on a Microsoft Azure Kinect
DK [29]. We use an HTC Vive tracker setup to obtain the ground
truth pose. The obtained ground truth pose has an offset compared
to the original pose since the tracker is at a different location from
the camera. We use the information from Kinect’s IMU sensor to
correct the offset.

For human pose estimation, we use the famous PoseTrack [26]
with 3792 frames across all video sequences. Finally, for face detec-
tion, we use the ChokePoint [33] dataset which comprise 20 video
sequences and 22,099 face images.

Baselines: We tested the workloads against the following base-
lines. (a) Frame-based computing: The system captures frames at
high resolution (FCH: 4K for V-SLAM) or low resolution (FCL:
1080p for V-SLAM) (b) Rhythmic pixel regions (RPx): The system
implements rhythmic pixel regions of cycle length "x" (c) Multi-ROI
cameras: The system simulates off-the-shelf multi-ROI cameras
(d) H.264: The system performs H.264 video compression with the
"Baseline” profile and the "5.2 (2160p60)" level for the codec.

As far as we've seen, commercial multi-ROI cameras only sup-

port up to 16 regions, likely due to architectural unscalability. For
workloads that use more regions, we combine smaller regions into
16 larger regions through k-means clustering. To accurately repre-
sent the capabilities of multi-ROI cameras, we do not implement
stride or skip adaptations. As an H.264 compression implementa-
tion is inaccessible on our FPGA board, we instead use a codec
datasheet to form estimations [44]. As compression needs multiple
frames to be stored in the memory, the pixel memory footprint and
throughput scale accordingly.
5.3.1 Metrics: Here we discuss about different evaluation metrics.
Task Accuracy: We choose standard accuracy metrics from com-
puter vision literature for all of our tasks. For visual SLAM, we
use absolute trajectory error and relative pose error metrics as dis-
cussed in §3.4. For human pose estimation/face detection, we use
the intersection over union (IoU) score as the metric. IoU measures
the amount of overlap between the predicted and ground truth
bounding boxes. A detection is a true positive (TP) if the IoU score
is greater than a certain threshold; otherwise, it is considered as a
false positive (FP). Final detection accuracy is the number of true
positives among all detections, i.e., TP/(TP + FP), across all the
frames, which is known as mean average precision (mAP).

Datarate and Memory Footprint: We build a throughput sim-
ulator which takes the region label specification per frame from the
application and uses it to generate the memory access patterns of

581

ASPLOS 21, April 19-23, 2021, Virtual, USA

Table 4: Observed statistics of task and benchmark

Avg. Number

Task . Region size Stride Rate
of regions

Visual 973 Min: 70x70 Min: 1 Min: 100 ms
SLAM Max: 230x230 Max:4 Max: 33 ms

Face Min: 70x63 Min: 1 Min: 67 ms

detection Max: 270x228 Max: 2 Max: 33 ms

Human Pose Min: 161x248 Min: 2 Min: 100 ms
estimation Max: 324x512 Max:4 Max: 33 ms

pixel traffic. The simulator counts the number of pixel transactions
and directly reports the read/write pixel throughput in bytes/sec.
For memory footprint, we measure the size of encoded frame buffers
over time.

Overhead: We use Xilinx Vivado [46] to determine the area and
power overhead of our encoder and decoder modules. We use the
resource utilization from the post-layout design as a proxy to report
the area overhead; For power overhead, we use the numbers from
Vivado power analysis tool.

5.3.2 Policy/Parameter Choices: We outline our choices below.
Region selection: As outlined in §4.3, we use feature character-
istics to guide the selection of region labels to evaluate our tasks.
For V-SLAM, region size is derived directly from the feature size
attribute, while spatial and temporal resolutions are derived from
the octave attribute and feature displacement respectively. We use
face trajectory for face detection and skeletal pose joints for human
pose estimation for determining the regions. Spatial and temporal
resolutions are calculated based on the region’s size and motion,
respectively.

Cycle length: We evaluate the effectiveness of the example
cycle-based policy with cycle lengths of CL=5, 10, and 15.

6 EVALUATION

6.1 The Use of Rhythmic Pixel Regions Is
Flexible

Our runtime successfully allows apps to express region labels with-
out any restrictions on the number, size, and resolution of the
regions, as shown in Table 4. The size of these regions vary based
on the semantics, e.g., nearness/farness of a face with respect to the
camera. These regions are also sampled at different spatio-temporal
resolutions based on their content.

Algorithms/Apps are still reliable: With flexible region speci-
fication, the app now deals with only the pixels within the regions as
opposed to the pixels in the entire frame. As shown in Fig. 9, we find
that apps can still reliably perform their tasks with a slight accuracy
loss compared to frame-based computing at high resolutions on
uncompressed (FCH) or compressed (H.264) frames. Comparatively,
frame-based computing at low resolutions (FCL) performs poorly,
with significantly raised errors for all of the visual workloads.

For our workloads, we observe a trade-off between cycle length
and accuracy. As shown in Fig. 9, while higher cycle lengths help
discard more pixels, they also take a toll on the task accuracy.
Moderate cycle lengths, e.g., CL=10, strike a reasonable balance
between energy savings and task accuracy.

ASPLOS 21, April 19-23, 2021, Virtual, USA

15001 £ read

Venkatesh Kodukula, Alexander Shearer,

2 . 2150

= 40m =

= 1000 =

5 30§ 5 100

a > a

< S <

2 500 20 € 2 50

8 TR

£ 0= g

072 @ O 0> & 0

L PP O
CELLOSs
(a) Visual SLAM (b) Human pose estimation

Van Nguyen, Srinivas Lingutla, Yifei Liu, and Robert LiKamWa

@
S

o
=)

FCH: Frame-based with high res.
[(a) 4K, (b) 720p, (c) SVGA]
FCL: Frame-based with low res.
[(a) 480p, (b) 240p, (c) 240p]
RPx: Rhythmic pixel regions with
a cycle length of x

H.264: MPEG-4 compression
Multi-ROI: < 16 regions

I
S

Throughput (MB/s)
S

)

(c) Face detection

Figure 8: Rhythmic pixel regions reduces pixel memory traffic by generating sparser pixel streams and reduces the memory
footprint by generating smaller frame buffers. The reduction is more with higher cycle lengths.

0.03 Eoao Z10
Eo02 E e
E @ 0.05 @ 5
< 0.01 2]
S 0.00 “ o
0.00 Fo.
X H OO0y P X P D9 Sy R P D9 ;e
R VN Ao CR? VL Ao C R VN AN
CELLETe CELLUIR CELLEIRp
(i) Trajectory Error (ii) Translational error (iii) Rotational Error

(a) Visual SLAM

75 100

g50 g

o a 50

< <

£25 H € H
O N o S DS e 0 R ® S o &
SR PN A S SO O
< %QgQg«%@@%o\ < %@Qg«\x%\io\

(i) mAP (i) mAP

(b) Human Pose Estimation (c) Face Detection

Figure 9: There is a trade-off between cycle length and task accuracy. In V-SLAM, we observe high standard deviation. This
indicates future opportunity to adaptively reduce cycle length to improve accuracy for scenes with high motion.

This raises a question: How much accuracy loss is acceptable?
There is no set standard in the vision community, as it depends on
the app context. To that end, the flexibility of policy choice allows
developers to heuristically set accuracy expectations for their spe-
cific apps. Our evaluated workloads result in roughly 5% accuracy
loss for moderate cycle lengths, i.e., CL=10. Future investigation
into region selection policies and adapted algorithms could further
improve accuracy.

We can also observe a higher standard deviation for raised cycle
lengths, especially for V-SLAM. This indicates scene-based variabil-
ity in accuracy loss. We analyze the scenes to find that the scenes
reporting low accuracy loss are fairly static in nature, whereas the
scenes with high accuracy loss have rapid scene motion. Other
scenes in our benchmark resulted in an average accuracy loss. Ide-
ally, in future integrations, this information could be leveraged,
e.g., using accelerometer data and/or scene knowledge to guide the
region selection policy.

6.2 The Use of Rhythmic Pixel Regions Is
Memory Friendly

Discarding pixels relieves memory interfaces: Rhythmic pixel
regions substantially reduce the data traffic across DDR interfaces,
as shown in Fig. 8. With higher cycle lengths, the system discards
more pixels, leading to further reduction in memory bandwidth.
Specifically, we find that memory traffic decreases by 5-10% with
every 5 step increase in cycle length.

Notably, we find that the work saving techniques such as search-
space reduction in our encoder works for a broad spectrum of videos
Our evaluated datasets, which contain different videos captured
in the wild, comprise images with regions spread across the entire

582

image as well as images with regions confined to a few areas within
the image. The encoder saves work in both cases. In the former
case, our encoder saves work by reducing the number of region
comparisons for each row. In the latter case, the encoder saves work
by skipping region comparison entirely for those rows where there
are no regions.

The pixel memory throughput for the multi-ROI baseline is larger
than that of rhythmic pixel regions for face detection and pose
estimation workloads and substantially higher for visual SLAM.
Video compression generates a substantially higher amount of
memory traffic since it operates on multiple frames.

Discarding pixels reduces memory footprint: Rhythmic
pixel regions not only relieve the memory interfaces but also helps
reduce the pixel memory footprint of the vision pipeline, with sim-
ilar trends, also shown in Fig.8. Specifically, with our paradigm,
the average frame buffer size reduces by roughly 50% compared to
frame-based computing. Frame buffers are storage intensive com-
ponents in the vision pipeline; with smaller frame buffers, a system
can not only reduce storage energy, but also potentially afford to
store buffers locally inside the SoC itself, thereby reducing reliance
on DRAM. Metadata produced by the encoder incurs minimal mem-
ory overhead. Specifically, EncMask and row offsets amount to 8%
of pixel buffer storage for a 1080p frame.

Energy efficiency implications of rhythmic pixel regions:
Memory efficiency begets energy efficiency; as is widely acknowl-
edged in the computer architecture community, systems expend
significant energy to move data in and out of memory. Based on
first order modeling (see Appendix), with an assumption of 300 pJ
to read a pixel and 400 pJ to write a pixel, the reduced interface
traffic of rhythmic pixel regions reduces energy consumption by 18
mJ per frame for RP10 on V-SLAM at 4K and 30 fps. This reduces

Rhythmic Pixel Regions: Multi-resolution Visual Sensing System towards High-Precision Visual Computing at Low Power

power consumption by 550 mW. The precise energy savings will
depend on system characteristics that are highly specific to the de-
vice, operating system, and application usage pattern. We leverage
the coarse model to contextualize the benefits of reducing pixel
memory throughput.

Further energy reduction could result from deeper investigation
in tuning vision algorithms and architectures to reduce their com-
putational workload on lower resolution workloads, e.g., avoiding
computation on zeroed pixels. Power reduction through sparse com-
puting has been shown to be effective strategy [7, 13, 50], which is
a focus of future work.

6.3 The Hardware Extensions Are Lightweight
and Scalable

Since real-estate is a precious resource on the SoC, our hardware ex-
tensions need to be lightweight and scalable to support a multitude
of regions without taking too many resources.

Encoder scales well with number of regions: As shown in
Table 5, the encoder is able to support additional regions with-
out needing significantly more transistors. This is because our
encoder utilizes a hybrid architecture that uses the processor for
pre-sorting at the OS level and specialized architecture for shortlist-
ing regions. This significantly reduces the number of comparisons
needed, thereby favoring scalability. On the other hand, resource
footprint for a fully-parallel based encoder design substantially
increases with more regions to such an extent that they cause syn-
thesis issues on the FPGA.

Decoder is agnostic to number of regions: As the decoder
uses bitmasks (EncMask) instead of region labels, our decoder de-
sign is agnostic to the number of regions. Specifically, it needs 699
LUTS, 1082 FFs, and 2 BRAM:s (18Kb) for 1080p decoding, regardless
of the number of supported regions.

Encoder/decoder are performant: Encoder and decoder de-
signs do not affect the pipeline performance. Our end-to-end system
with encoder and decoder runs in real-time; our encoder meets the
2 PPC constraint of the capture pipeline. For the decoder, since it
intercepts every pixel transaction and appropriately modifies the
transaction response, it will add a few clock cycles of delay when
returning the response. We find that this delay is the order of a few
10s of ns and is negligible compared to the frame compute time —
typically 10s of ms - of vision workloads.

Our alternative software decoder also runs in real time, consum-
ing a few ms of CPU time for a 1080p frame where 30% of the pixels
are regional pixels. The software decoder linearly scales in time to
the amount of regional pixels.

Encoder/decoder are power-efficient: Our hardware exten-
sions need to be power-efficient so as not to outweigh potential
energy savings. Our encoder consumes 45 mW for supporting 1600
regions, which entails less than 7% of standard mobile ISP chip
power (650 mW). Our decoder consumes < 1 mW of power. These
power consumption estimates are based off of FPGA targets; power-
efficiency improves for ASIC targets, which we will study as future
work.

7 FUTURE DIRECTIONS

DRAM-less Computing: The paradigm of rhythmic pixel re-
gions significantly reduces the average size of the frame buffer.

583

ASPLOS 21, April 19-23, 2021, Virtual, USA

Table 5: Resource utilization for different encoder designs

Type #Regions Resources

| #LUTs #FFs | #BRAMs
Parallel 100 4644 5935 6
Parallel 200 8635 10935 6
Parallel 400 16251 20685 6
Parallel 1600 No Synth No Synth ~ No Synth
Hybrid 100 942 1189 11
Hybrid 200 949 1190 11
Hybrid 400 944 1191 11
Hybrid 1600 952 1186 11

This presents an opportunity to store frame buffers in the local SoC
memory when not dealing with full frame captures. By doing so, the
system would be less dependent on DRAM, thereby significantly
reducing data movement. In the future, we will study such an inte-
grated memory-compute system and its effectiveness in reducing
memory datarate.

Rhythmic Pixel Camera: In this work, we place our encoder
after the camera capture inside the SoC. However, the MIPI interface
which sends the pixels from camera to SoC is still burdened with
data movement. To this end, we plan to study an integration of our
encoder inside the camera module to reduce MIPI interface traffic
for further energy savings.

Pixel Region Selection Policies: We will further explore po-
tential policy tradeoffs of rhythmic pixel regions. We will study
motion estimation techniques in guiding the region label selec-
tion. Machine learning, e.g., reinforcement learning, could also
autonomously guide region selection. We believe these will unlock
the potential of rhythmic pixel regions for high-precision visual
computing with efficient memory use.

8 CONCLUSION

Frame-based computing is limited by fixed resolutions and frame
rates. We propose an architecture to sample regions with different
spatiotemporal rhythms, and a runtime to allow region selection
control. We efficiently encode regions before writing them to mem-
ory. We decode the compact data on-the-fly before feeding it to
the vision apps for seamless use. This relieves interface traffic and
memory footprint, towards system energy-efficiency. With our
hardware/software interfaces, we take early steps to transform the
norm of imaging/vision trends towards precise, performant, and
efficient vision for AR/VR systems.

ACKNOWLEDGMENTS

The authors are grateful for comments made by anonymous review-
ers and the paper shepherd Dr. Vijay Janapa Reddi. This material is
based upon work supported by the National Science Foundation
under grants 1942844 and 1909663.

APPENDIX
A.1 Rhythmic Pixel Regions in Action

In Figs. 10-15, we show the progression of frames for different
workloads in action.

ASPLOS 21, April 19-23, 2021, Virtual, USA Venkatesh Kodukula, Alexander Shearer, Van Nguyen, Srinivas Lingutla, Yifei Liu, and Robert LiKamWa

(a) Frame 1(100%) (b) Frame 2 (37%) (c) Frame 3 (31%) (d) Frame 4 (34%) (e) Frame 5 (27%) (f) Frame 6 (35%) (g) Frame 7 (100%)

Figure 10: Task: Visual SLAM; Benchmark: TUM freiburgl-xyz

(a) Frame 1(100%) (b) Frame 2 (42%) (c) Frame 3 (36%) (d) Frame 4 (39%) (e) Frame 5 (33%) (f) Frame 6 (40%) (g) Frame 7 (100%)

Figure 11: Task: Visual SLAM; Benchmark: TUM freiburg1-floor

(a) Frame 1(100%) (b) Frame 2 (44%) (c) Frame 3 (41%) (d) Frame 4 (37%) (e) Frame 5 (32%) (f) Frame 6 (35%) (g) Frame 7 (100%)

Figure 12: Task: Visual SLAM; Benchmark: TUM freiburg2-360-kidnap-secret

SRS
W s

(a) Frame 1(100%) (b) Frame 2 (31%) (c) Frame 3 (24%) (d) Frame 4 (29%) (e) Frame 5 (23%) (f) Frame 6 (33%) (g) Frame 7 (100%)

Figure 13: Task: Human pose estimation; Benchmark: PoseTrack 2017 024575-mpii

(a) Frame 1 (100%) (b) Frame 2 (39%) (c) Frame 3 (23%) (d) Frame 4 (36%) (e) Frame 5 (21%) (f) Frame 6 (41%) (g) Frame 7 (100%)

Figure 14: Task: Human pose estimation; Benchmark: PoseTrack 2017 015301-mpii

(a) Frame 1(100%) (b) Frame 2 (28%) (c) Frame 3 (26%) (d) Frame 4 (22%) (e) Frame 5 (37%) (f) Frame 6 (31%) (g) Frame 7 (100%)

Figure 15: Task: Face detection; Benchmark: Chokepoint dataset P2E-S5

A.2 Energy Model are not representative of mobile systems, which consume only a

The power measurements directly taken off from the Xilinx Zynq few watts of power for typical vision tasks. Therefore, we construct

FPGA board, which consumes power on the order of tens of watts, a coarse energy model based on reported numbers in component
datasheets and computer architecture literature to estimate system

584

Rhythmic Pixel Regions: Multi-resolution Visual Sensing System towards High-Precision Visual Computing at Low Power

Table 6: Energy-per-pixel of various components in the vision
pipeline. As is widely acknowledged, communication cost is
atleast three orders of magnitude more than compute cost.

Component Energy (pJ/pixel)
Sensing 595 [8, 22]
Communication (SoC - DRAM) 2800 [17, 24, 27, 35, 36, 47]
Storage 677 [12, 25, 28, 42]

Computation (per MAC) 4.6 [16]

power. Precise energy savings will depend on system characteristics
that are highly specific to the device, operating system, and appli-
cation usage pattern. We construct the first-order linear model to
approximate power consumption so as to contextualize the benefits
of reducing pixel memory throughput in a mobile system.

In particular, we break down the system energy into four compo-
nents: sensing, computation, storage, and communication, as shown
in Table 6. Sensing requires an energy of roughly 600 pJ/pixel [8, 22],
mostly drawn from three components: pixel array, read-out circuits,
and analog signal chain. DRAM storage on standard mobile-class
memory chips (8 Gb, 32-bit LPDDR4) draws 677 p]J/pixel for writing
and reading a pixel value [28]. This roughly divides into 300 pJ/pixel
for reading and 400 pJ/pixel for writing [12, 25, 42]. Communication
over DDR interfaces incur 4 nJ/pixel, mostly due to operational
amplifiers on transmitters and receivers. We measure the interface
power dissipation [47] on 4-lane CSI interfaces and LPDDR4 in-
terfaces by inputting several datarates. From this information, we
construct a linear-regression model to estimate the energy per pixel
to be 1 nJ/pixel over CSI and 3 nJ/pixel [17, 24, 27, 35, 36] over DDR.
We use 5 pJ per MAC operation [16] to estimate compute energy.

We use FPGA measurements of pixel memory read/write through-
put and computation patterns to apply the runtime behavior of the
system to our energy model. For communication and storage, we
take memory traffic/footprint values from Fig 7 and apply them to
the model. We obtain sensing energy by applying frame resolution
from Table 3 on our model. For compute energy, we take the num-
ber of MAC operations for our CNN workloads and apply them to
the model.

REFERENCES

[1] 1996scarlet. RetinaNet. https://github.com/1996scarlet/faster-mobile-retinaface.
[2] Andrew Adams, Eino-Ville Talvala, Sung Hee Park, David E Jacobs, Boris Ajdin,
Natasha Gelfand, Jennifer Dolson, Daniel Vaquero, Jongmin Baek, Marius Tico,
et al. The frankencamera: an experimental platform for computational photogra-
phy. In ACM SIGGRAPH. 2010.

Android. Android Camera API documentation. https://developer.android.com/
guide/topics/media/camera.

Mark Buckler, Philip Bedoukian, Suren Jayasuriya, and Adrian Sampson. Eva?:
Exploiting temporal redundancy in live computer vision. In ACM/IEEE 45th
Annual Int. Symp on Computer Architecture (ISCA), 2018.

Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh. Openpose: Real-
time multi-person 2d pose estimation using part affinity fields. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2019.

Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl, and Hari
Balakrishnan. Glimpse: Continuous, real-time object recognition on mobile
devices. In Proc. of the 13th ACM Conf. on Embedded Networked Sensor Systems,
2015.

Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices. IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, 2019.

Jaehyuk Choi, Seokjun Park, Jihyun Cho, and Euisik Yoon. An
energy/illumination-adaptive CMOS image sensor with reconfigurable

[7

[

(8]

585

[10

[11

[12

(13

[14

[15

[16]

(18

[19

[20

[21

~
&,

[23

[24]

[25

[27

[28

[29

[30

[31

ASPLOS 21, April 19-23, 2021, Virtual, USA

modes of operations. IEEE Journal of Solid-State Circuits, 2015.

EETimes. Tensilica’s New Vision/AI DSP Guns for SLAM. https://www.eetimes.
com/tensilicas-new-vision-ai-dsp- guns-for-slam.

Yu Feng, Paul Whatmough, and Yuhao Zhu. Asv: accelerated stereo vision system.
In Proc. of the 52nd Annual IEEE/ACM Int. Symp. on Microarchitecture, 2019.
Gallego, Guillermo and Delbruck, Tobi and Orchard, Garrick and Bartolozzi,
Chiara and Taba, Brian and Censi, Andrea and Leutenegger, Stefan and Davison,
Andrew and Conradt, Jérg and Daniilidis, Kostas and others. Event-based vision:
A survey. arXiv preprint arXiv:1904.08405, 2019.

Saugata Ghose, Abdullah Giray Yaglik¢i, Raghav Gupta, Donghyuk Lee, Kais
Kudrolli, William X Liu, Hasan Hassan, Kevin K Chang, Niladrish Chatterjee,
Aditya Agrawal, Mike Connor, and Onur Mutlu. What your dram power models
are not telling you: Lessons from a detailed experimental study. Proc. of the ACM
on Measurement and Analysis of Computing Systems, 2018.

Ashish Gondimalla, Noah Chesnut, Mithuna Thottethodi, and TN Vijaykumar.
Sparten: A sparse tensor accelerator for convolutional neural networks. In Proc.
of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, 2019.
Google. Take off to your next destination with Google Maps. https://www.blog.
google/products/maps/take-your-next-destination-google-maps.

Mohit Gupta, Amit Agrawal, Ashok Veeraraghavan, and Srinivasa G Narasimhan.
Flexible voxels for motion-aware videography. In European Conference on Com-
puter Vision, 2010.

Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solomatnikov,
Benjamin C Lee, Stephen Richardson, Christos Kozyrakis, and Mark Horowitz.
Understanding sources of inefficiency in general-purpose chips. In Proc. of the
37th annual intl. symp on Computer architecture, 2010.

Ron Ho, Kenneth W Mai, and Mark A Horowitz. The future of wires. Proc. of the
IEEE, 2001.

Tobias Hollerer and Steve Feiner. Mobile augmented reality. Telegeoinformatics:
Location-based computing and services, 21, 2004.

Jinhan Hu, Jianan Yang, Vraj Delhivala, and Robert LiKamWa. Characterizing the
reconfiguration latency of image sensor resolution on android devices. In Proc.
of the 19th International Workshop on Mobile Computing Systems & Applications,
2018.

Taian Richardson. H.264 and MPEG-4 Video Compression: Video Coding for Next-
generation Multimedia. 2004.

Odrika Igbal, Saquib Siddiqui, Joshua Martin, Sameeksha Katoch, Andreas
Spanias, Daniel Bliss, Suren Jayasuriya, and SenSIP Center. Design and fpga
implementation of an adaptive video subsampling algorithm for energy-efficient
single object tracking. In IEEE Int Conf on Image Processing, 2020.

Robert LiKamWa, Bodhi Priyantha, Matthai Philipose, Lin Zhong, and Paramvir
Bahl. Energy characterization and optimization of image sensing toward contin-
uous mobile vision. In Proc. of the 11th annual international conference on Mobile
systems, applications, and services, 2013.

Chaochao Lu, Michael Hirsch, and Bernhard Scholkopf. Flexible spatio-temporal
networks for video prediction. In Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition, 2017.

Nir Magen, Avinoam Kolodny, Uri Weiser, and Nachum Shamir. Interconnect-
power dissipation in a microprocessor. In Proc. of the 2004 international workshop
on System level interconnect prediction, 2004.

Krishna T Malladi, Frank A Nothaft, Karthika Periyathambi, Benjamin C Lee,
Christos Kozyrakis, and Mark Horowitz. Towards energy-proportional datacenter
memory with mobile dram. In 39th Annual Int. Symp. on Computer Architecture
(ISCA). IEEE, 2012.

Max Planck Institute for Informatics, University of Bonn. PoseTrack Dataset and
Benchmark. https://posetrack.net/.

James D Meindl, Jeffrey A Davis, Payman Zarkesh-Ha, Chirag S Patel, Kevin P
Martin, and Paul A Kohl. Interconnect opportunities for gigascale integration.
IBM journal of research and development, 2002.

Micron technologies. Micron system power calculators. https://www.micron.
com/support/tools-and-utilities/power-calc.

Microsoft. Azure Kinect DK. https://www.microsoft.com/en-us/p/azure-kinect-
dk/8pp5vxmdInhq?activetab=pivot%3aoverviewtab.

MIPI Alliance. MIPI Camera Serial Interface 2 (MIPI CSI-2). https://www.mipi.
org/specifications/csi- 2.

Mur-Artal, Radl, Montiel, J. M. M. and Tardés, Juan D. ORB-SLAM: a versatile
and accurate monocular SLAM system. IEEE Trans. on Robotics, 2015.

Saman Naderiparizi, Pengyu Zhang, Matthai Philipose, Bodhi Priyantha, Jie
Liu, and Deepak Ganesan. Glimpse: A programmable early-discard camera
architecture for continuous mobile vision. In Proc. of the 15th Annual Int. Conf.
on Mobile Systems, Applications, and Services, 2017.

NICTA. ChokePoint Dataset. http://arma.sourceforge.net/chokepoint/.
OpenCV. OpenCV KeyPoint Class Reference. https://docs.opencv.org/3.4/d2/
d29/classcv_1_1KeyPoint.html.

Dhinakaran Pandiyan and Carole-Jean Wu. Quantifying the energy cost of data
movement for emerging smart phone workloads on mobile platforms. In 2014
IEEE Int. Syump. on Workload Characterization (ISWC). IEEE, 2014.

https://github.com/1996scarlet/faster-mobile-retinaface
https://developer.android.com/guide/topics/media/camera
https://developer.android.com/guide/topics/media/camera
https://www.eetimes.com/tensilicas-new-vision-ai-dsp-guns-for-slam
https://www.eetimes.com/tensilicas-new-vision-ai-dsp-guns-for-slam
https://www.blog.google/products/maps/take-your-next-destination-google-maps
https://www.blog.google/products/maps/take-your-next-destination-google-maps
https://posetrack.net/
https://www.micron.com/support/tools-and-utilities/power-calc
https://www.micron.com/support/tools-and-utilities/power-calc
https://www.microsoft.com/en-us/p/azure-kinect-dk/8pp5vxmd9nhq?activetab=pivot%3aoverviewtab
https://www.microsoft.com/en-us/p/azure-kinect-dk/8pp5vxmd9nhq?activetab=pivot%3aoverviewtab
https://www.mipi.org/specifications/csi-2
https://www.mipi.org/specifications/csi-2
http://arma.sourceforge.net/chokepoint/
https://docs.opencv.org/3.4/d2/d29/classcv_1_1KeyPoint.html
https://docs.opencv.org/3.4/d2/d29/classcv_1_1KeyPoint.html

ASPLOS 21, April 19-23, 2021, Virtual, USA

[36

[37

[38]
[39]

[40

[41

[42]

Vijay Raghunathan, Mani B Srivastava, and Rajesh K Gupta. A survey of tech-
niques for energy efficient on-chip communication. In ACM Proc. of the 40th
annual Design Automation Conference, 2003.

Dikpal Reddy, Ashok Veeraraghavan, and Rama Chellappa. P2c2: Programmable
pixel compressive camera for high speed imaging. In CVPR 2011.

Richard Szeliski. Computer Vision: Algorithms and Applications Ist ed. 2010.
Stemmer Imaging. Teledyne DALSA Piranha4 - Dual-Line-CMOS line cam-
era. https://www.stemmer-imaging.com/en/products/series/teledyne-dalsa-
piranha4.

J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark for
the evaluation of rgb-d slam systems. In Proc. of the International Conference on
Intelligent Robot Systems (IROS), 2012.

Synopsys. Augmenting Your Reality with Deep Learning. https:
/[www.synopsys.com/designware-ip/technical-bulletin/augmenting-your-
reality-dwtb_q318.html.

Thomas Vogelsang. Understanding the energy consumption of dynamic random
access memories. In 43rd Annual IEEE/ACM Int Symp. on Microarchitecture. IEEE,
2010.

586

[43]

[44

[45

[46

Venkatesh Kodukula, Alexander Shearer, Van Nguyen, Srinivas Lingutla, Yifei Liu, and Robert LiKamWa

Wikipedia. Foveated Rendering. https://en.wikipedia.org/wiki/Foveated
rendering.
Xilinx. H.264/H.265 Video Codec Unit v1.2. https://www.xilinx.com/support/

documentation/ip_documentation/veu/v1_2/pg252-veu.pdf.

Xilinx. reVISION Getting Started Guide 2018.3 (UG1265). https://github.com/
Xilinx/reVISION- Getting- Started-Guide.

Xilinx. Vivado Design Suite. https://www.xilinx.com/products/design-tools/
vivado.html.

Xilinx. Xilinx Power Estimator. https://www.xilinx.com/products/technology/
power/xpe.html.

Xilinkx. Zynq DPU v3.2. https://www.xilinx.com/support/documentation/ip_
documentation/dpu/v3_2/pg338-dpu.pdf.

ximea. Multiple ROI cameras. https://www.ximea.com/support/wiki/allprod/
Multiple_ROL

Zhekai Zhang, Hanrui Wang, Song Han, and William J Dally. Sparch: Efficient
architecture for sparse matrix multiplication. In 2020 IEEE Int. Symp. on High
Performance Computer Architecture (HPCA), 2020.

Yuhao Zhu, Anand Samajdar, Matthew Mattina, and Paul Whatmough. Euphrates:
Algorithm-soc co-design for low-power mobile continuous vision. ISCA, 2018.

https://www.stemmer-imaging.com/en/products/series/teledyne-dalsa-piranha4
https://www.stemmer-imaging.com/en/products/series/teledyne-dalsa-piranha4
https://www.synopsys.com/designware-ip/technical-bulletin/augmenting-your-reality-dwtb_q318.html
https://www.synopsys.com/designware-ip/technical-bulletin/augmenting-your-reality-dwtb_q318.html
https://www.synopsys.com/designware-ip/technical-bulletin/augmenting-your-reality-dwtb_q318.html
https://en.wikipedia.org/wiki/Foveated_rendering
https://en.wikipedia.org/wiki/Foveated_rendering
https://www.xilinx.com/support/documentation/ip_documentation/vcu/v1_2/pg252-vcu.pdf
https://www.xilinx.com/support/documentation/ip_documentation/vcu/v1_2/pg252-vcu.pdf
https://github.com/Xilinx/reVISION-Getting-Started-Guide
https://github.com/Xilinx/reVISION-Getting-Started-Guide
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/technology/power/xpe.html
https://www.xilinx.com/products/technology/power/xpe.html
https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_2/pg338-dpu.pdf
https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_2/pg338-dpu.pdf
https://www.ximea.com/support/wiki/allprod/Multiple_ROI
https://www.ximea.com/support/wiki/allprod/Multiple_ROI

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Visual computing with rhythmic pixel regions
	3.1 Developer-Specified Region Labels
	3.2 Encoded Frame
	3.3 Metadata: Per-Row Offset, Encoding Mask (EncMask)
	3.4 A Case Study around ORB-SLAM

	4 Design
	4.1 Rhythmic Pixel Encoder Architecture
	4.2 Rhythmic Pixel Decoder Architecture
	4.3 Developer Support for Rhythmic Pixel Regions

	5 Implementation
	5.1 FPGA-Based Encoder and Decoder Integration
	5.2 Runtime
	5.3 Workloads

	6 Evaluation
	6.1 The Use of Rhythmic Pixel Regions Is Flexible
	6.2 The Use of Rhythmic Pixel Regions Is Memory Friendly
	6.3 The Hardware Extensions Are Lightweight and Scalable

	7 Future Directions
	8 Conclusion
	Acknowledgments
	References

