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ABSTRACT

Mimicking physical odor sensations virtually can present users

with a real-time odor synthesis that approximates what users

would smell in a virtual environment, e.g., as they walk around

in virtual reality. To this end, we devise a Smell Engine that
includes: (i) a Smell Composer framework that allows developers
to configure odor sources in virtual space, (ii) a Smell Mixer that
dynamically estimates the odor mix that the user would smell, based
on diffusion models and relative odor source distances, and (iii)
a Smell Controller that coordinates an olfactometer to physically
present an approximation of the odor mix to the user’s mask from a
set of odorants channeled through controllable flow valves. Through

a three-part user study, we found that the Smell Engine can help

measure a subject’s olfactory detection threshold and improve their

ability to precisely localize odors in the virtual environment, as

compared to existing trigger-based solutions.

Index Terms: Human-centered computing—Interactive systems
and tools; Computer systems organization—Sensors and actuators

1 INTRODUCTION

As humans, our sense of smell – also known as olfaction – allows us
to navigate rich environments of scents that signal appetite, threat,
nostalgia, and other feelings. Through mental association with
previous experiences, olfaction allows us to prepare for the situation
at hand. Infused alongside visual, auditory, and tactile cues, the
spatial and temporal nature of odor allows humans to associate scents
with specific objects and areas, thereby informing how to interpret
and handle various situations, especially when navigating unfamiliar
environments or events. Allowing virtual environments to similarly
produce odors produce spatiotemporal olfactory cues would provide
a platform for multisensory training, education, memory, and several
other use cases. This is important for virtual reality and augmented
reality, as immersive visual and auditory systems would be expanded
with olfactory systems to accompany them.

As such, we see a compelling opportunity to synthesize physical
odors that mimic what a user would experience while exploring an
odor-infused virtual environment with virtual objects. While existing
works can produce specific pre-mixed odor mixes and perfumes, as
triggered by virtual cues, we aspire to design a virtual olfaction
system that is more naturally integrated into spatiotemporal virtual
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Figure 1: The Smell Engine enables programmable scent-filled
environments, consisting of scenes and objects with associated odors
that render through an olfactory display.

environments among other multisensory stimuli. In particular, we
look to design a software framework that is:

• spatiotemporally reactive, responsive to a user’s position in
relation to the odors and events in the virtual environment,
modifying the mix and strength of the odors as they arrive at
the user’s virtual nose;

• expressive in scent programmability, offering developers and
designers the ability to program a wide range of odor profiles,
odor intensities, and odor dispersion characteristics into the
virtual environment;

• modular in operation, providing hardware abstraction layers
to control odor-synthesizing hardware and platform interfaces
to explore further modes of odor-mixing hardware; and

• multi-sensory in integration, embedded in standard game
engine design/development for integration alongside visual
and auditory sensations.

To this end, we devise a Smell Engine that includes: (i) a
Smell Composer framework that allows developers to configure
odor sources in virtual space, (ii) a Smell Mixer that dynamically
estimates the odor mix that the user would smell, based on
diffusion models and relative odor source distances, and (iii) a Smell
Controller that coordinates a hardware olfactometer to physically
present an approximation of the odor mix to the user’s mask
from a set of odorants channeled through controllable flow valves.
We implement and integrate our Smell Engine with the Unity
Game Engine, allowing designers to place odors and specify their
dispersion characteristics at design time, and stimulating distance-
based odor mixing at runtime, produced through the hardware valve
system. Our Smell Engine framework operates alongside existing
visual and auditory systems of the Unity Game Engine, using the
position of the user’s virtual camera as a rough estimation of the
position of the user’s virtual “nose”. Altogether, this provides an end-
to-end system for artificial odor synthesis of virtual environments.

We evaluate our Smell Engine through measurement-based
studies and user studies. We measure our system’s odor generation

precision by using a photoionization detector (PID) to measure

outflowing gas concentration. We found that the Smell Engine can
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produce granular changes in odor strength in scales ranging from

10.0 picomolar to 1.0 millimolar. 1

For the user studies, we determine the system’s timeliness of

odor delivery, the system’s ability to help identify a user’s olfactory

detection thresholds, and the system’s ability to help improve user

localization of odor sources in a virtual environment. With the first
user study, we measure the user-perceived latency. We found that
some users perceived odors relatively quickly, within 2.5 seconds,
while others perceived odors more slowly, e.g., around 10 seconds.
In our second user study, we used the Smell Engine to identify user-
perceivable just-noticeable-difference (JND) thresholds for changes
in olfactory stimulus magnitude. Not only could the Smell Engine
help identify a subject’s odor acuity levels, but it could generate odor
concentrations at an even finer granularity than user-perceivable
detection thresholds. For the final user study, we investigated how
accurately users can localize an odor source between our approach
for odor delivery and the traditional collider-based delivery method.
The results show that our odor delivery method improved the average
user accuracy of the group by 43% and improved the average
proximity of their odor source localization by 55%.

In summary, we contribute a software-hardware framework that
integrates olfactory stimuli into virtual environments, such that
odor strengths spatiotemporally vary based on user navigation and
interaction, presenting odors through a mask-based apparatus.

2 RELATED WORK

Works in the human-computer interaction community have advanced
the design and development of olfactory display technologies
and virtualization of olfactory spaces. These describe common
challenges, such as: i) supporting a large dynamic range of odor
strengths (which is essential to perception because psychometric
curves span many orders of magnitude), ii) providing fine temporal
control for odor generation, iii) virtualizing the olfactory space in a
scalable fashion. In this section, we outline the key advancements,
capabilities, and limitations of these research spaces.

2.1 Olfactory Displays (Wearable and Desktop)
Olfactory display systems deliver olfactory stimuli through a variety
of approaches, including Surface Acoustic Wave (SAW) devices
[8], Piezoelectric sensors [2, 8, 19, 24, 25], ink-jet printers [20],
and multi-component devices [6, 13–16]. In [11, 27], a desktop
olfactory display system directs odorous airflow to physically collide
and spatially disperse odorant molecules (OM) at the user’s nose.
Simplified inexpensive systems can also direct odorant airflow to
a user by vaporizing a liquid odorant using a fan, microcontroller,
and 3D printed enclosure [9]. Similarly, OSpace [6] presents scent-
delivery with parametric adjustments in timing, relative intensity of
constituent odorants, flow rates, and air extraction.

Other wearable olfactory display research, [7, 8, 17, 24, 26],
investigates form factors of eyeglasses, necklaces, and VR HMD
clamps, shortening the length/travel-time when delivering scents
to the user’s nose. In commercial realms, OVR Technologies -

built a wearable olfactory display that attaches to VR HMDs,

comprising swappable odor vials, a custom Unity API to assign

scent parameters to objects, and a fan to clear out millisecond-long

bursts of scented liquids. Although the system generates odors with

different intensities, it is coarsely triggered by collider and reliant

upon pre-mixed scent profiles rather than leveraging the chemical or

physical properties of the odorants.

2.2 Virtually Parameterizing Olfactory Stimuli
To date, two approaches primarily account for how odor
concentration varies spatially and temporally for a virtual

1A molar unit represents the moles of solute per liter of solution.

environment: user-navigable collider-based systems [4, 8, 19] and
Computational Fluid Dynamics (CFD) to calculate the airflow field
and how an odor disperses [10, 12, 13]. These works demonstrate
a tradeoff between computation time, wearability/portability, and
accuracy of odor field virtualization.

Exploring the odor mixing capabilities of olfactory displays, [15]
found that a modular system consisting of a micro-pump, liquid
odorants connected to solenoid valves, and a SAW atomizer, can
blend odors that are identical to pre-blended odors in liquid phase.To
scale up the quantity of odorants and perceivable strength, [18]
devised a 24-scent multi-sensory display capable of harnessing scent
type, scent intensity, wind speed, and air temperature.

In favor of wearability and reduced computation time, [13]
implemented a wearable olfactory display that atomizes a liquid
odorant when the user virtually triggers a collider in the virtual
environment. Similarly, Season Traveler [19] implemented a
wearable olfactory that modulated piezo-electric sensors to vaporize
a set of liquid odorants towards the user’s nose upon virtual collision
with an odor-trigger object. While innovative, the systems were
confined to a limited set of achievable odor selections and strengths.

To explore accuracy in odor virtualization, [26] showed that an
odor display can simulate a laminar-air flow model of user-perceived
strength of an odor field by tuning parametric adjustments of delivery
timing. Further improving accuracy in representing a virtual odor
field, CFD simulations can model how odorant concentrations evolve
in both space and time [10, 12]. In [13], a CFD solver generates
a matrix-like lookup table for instant lookup of odor concentration
strengths based on the airflow and dispersal of a particular odorant
at a distinct location, e.g., user’s location at any given point in time.
Although this system model presents smells accurately, it suffers
from intensivee computation time due to pre-calculation – iterating
over every object and its position in virtual space – resulting in a
fixed, static representation of the virtual odor space.

2.3 Multisensory VR Systems

To date, several studies have focused on multi-sensory system design,
sensory substitution, and stereo-olfactory displays [4, 5, 18, 19, 23]
Studying the impact and challenges of integrating and creating
multisensory stimuli for VR experiences, [19] added olfactory
and tactile (thermal and wind) stimuli to audio-visual stimuli. They
found that users felt increased immersion with multiple perceptual
stimuli; however, users were not able to strictly attribute presence
and immersion to olfactory stimuli potentially because of the
‘fundamental attribution error’ [22]. This work raises the question
of how critical it is that olfactory stimuli in virtual environments
precisely replicate olfactory stimuli in real life for users to perceive
the stimuli as ‘real’. Novel research directions become available
if stimuli experienced in virtual worlds can be mixed and used to
reflect other stimuli sensations. For example, [4] developed a device
that tricks users into perceiving thermal sensations by stimulating
the users’ trigeminal nerve, providing a better understanding of the
relationships between thermal and olfactory stimuli.

To provide a sense of directionality for artificial olfaction, recent
studies [5, 18] have explored stereo rendering of olfaction using
chemical and electrical stimulation. In [3], a VR headset is equipped
with a system that allows for switching between scents, altering
the temperature of the air carrying the scents, changing the burst
frequency of the scents, and specifying the directional airflow of the
scents to the user using tubes clamped to the sides of the headset.
In [5], Jas. et al create a stereo-smell experience via electrical
stimulation by stimulating the user’s trigeminal nerve through a
device worn across a user’s nasal septum. Mixing sensory stimuli in
VR can push multisensory research in new directions.
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Figure 2: The Smell Engine has several independently controlled
solenoid valves, each of which directs airflow derived from the air
source across a single OM source with a high/low flow rate. Coming
out of the olfactometer, the odorous air is merged with clean air and
directed into the user’s nose. A vacuum continuously clears out the
air passage.

3 ODOR SCIENCE
3.1 Odor Mix Vector
Our perception of smell comes from specialized olfactory sensory
neurons. Microscopic odorous molecules (OM)2 bind to and activate
specialized receptors on these neurons, which send messages to our
brain, which decodes the activation of specific combinations of
olfactory neurons into distinct smells. Most real odor mixtures
– as experienced in nature – comprise different OMs at varying
concentrations. Increasing the concentration of a single OM
influences its perceived olfactory intensity, i.e. how strong it smells.
Changing the relative concentration of OMs in a mixture can change
the olfactory character of the stimulus, i.e., what is smells like.

For an odor to be detectable by a human, the concentration of at
least one OM must exceed a detection threshold; for a change in
concentration to be detected, the absolute change must exceed the
so-called just-noticeable-difference (JND, also called “difference
threshold” or δC), defined as the absolute difference in concentration
required for detection of change from the initial concentration.
Weber’s Law (defined for all stimulus modalities, not just olfaction),
states that the JND is a constant proportion of the original stimulus

magnitude, i.e., that the ratio k = δC
C is a constant. A primary goal

of the Smell Engine is to be able to produce odors at an appropriate
resolution across the perceivable concentration range of OMs – high
enough to replicate the smallest detectable changes in concentration.

To allow for controlled changes in perceived odor intensity, our
system digitally parameterizes the physical properties of the OMs
that are stored in the liquid phase in identical vessels. Parameters
include vapor pressure, liquid-phase density, and molecular weight.
From these values, our system computes the partial pressure of the
vapor phase for each OM at steady-state within an associated vessel.
Mixing these OMs produces an N-dimensional “Odor Mix” Vector,
where N is the number of unique odorants in the virtual space.

3.2 Odor Delivery System (Olfactometer)
The odor delivery system is a dynamic dilution olfactometer:
a consistent airflow source that mixes OMs by combining the
independents vapors from one or more vessels attached to a
manifold. The olfactometer operates with a fixed set of odorants
distributed across a number of sealed vessels, capable of producing
many combinations of odor mixtures. The specific odorants and
concentration in each vessel must be determined in advance, but
linear combinations can be delivered during the operation phase.

The olfactometer directs clean airflow through the headspace
of vessels containing liquid odorants in an odorless solvent (light
mineral oil). This is achieved using a manifold of programmable,

2We use OM to refer to the molecule or to ensembles of the molecule.

digital solenoid valves and analog programmable mass flow
controllers to provide precise flow rate through each vessel
headspace, thus creating the OM composition of the resulting
mixture. 10 L/min is a standard output flow rate for an olfactometer,
formed from the combined output of the OM manifold and a clean
air stream to achieve proper dilution. Solenoid valves direct the
output of each vessel pneumatically to one of three paths: high flow
(A), low flow (B), or no flow (Figure 2). Each valve is programmed
such that each odor “frame” can contain any combination of state
occupancy times that sum to the length of the frame (here, 1 second).
This forms a duty cycle of active and inactive OM contribution.

The system uses Mass Flow Controllers (MFC) to govern the low
flow and high flow paths, recomputed in each frame within each
MFC’s operating range. Each MFC is chosen to provide precise flow
rate control in a different concentration regime (A: 1-1000 mL/min;
B: 0.01-10 mL/min; Final: 0.01-10 L/min), and by combining them
a high dynamic range is achieved. We aim to hold the total flow rate
constant to produce a consistent user experience with constant air
pressure. Total control over the composition of the Odor Vector –
the time-varying concentration of each OM – is thus achieved by
continuously and jointly setting the duty cycles of each solenoid
valve and the flow rate setpoints of each MFC.

The odorous air output from the olfactometer is combined with
clean air, then fed into a nose mask that nests/clamps over the user’s
nose, as illustrated in Figure 2. Attached to the bottom outlet of
the nose mask is a vacuum that sucks odorous air from the nose
mask every other 500 ms. If no odorous air is outputted from the
olfactometer, then the user is continuously fed clean air. Altogether,
our system directs constant airflow with partial flow rates over valve
devices adjusted by a set of MFCs, recombined and fed into a nose
mask worn on the user’s nose.

4 SYSTEM DESIGN/METHODOLOGY
We design the Smell Engine to provide olfactory stimuli that are:
i) spatially varying, ii) diverse and granular in user-perceivable
strength, and iii) contextual to the virtual environment. To this end,
the Smell Engine uses three primary components – as illustrated
in Figure 3: a Smell Composer for design of virtual odor spaces, a
Smell Controller for runtime computation of virtual odor mixes, and
a Valve Driver to control hardware to produce physical odor mixes.

4.1 Designer Tools for Odor-Infused Environments
To allow designers to create a virtual scent-filled environment
consisting of odorous objects and regions, we provide a Smell
Composer framework that designers can use to specify Odor Source
instances and locations. Designers do this by attaching Odor
Source components to virtual objects, describing odor identity and
propagation characteristics as attributes of the Odor Source. Odor
Sources can also be attached to the entire virtual space, creating
an “ambient smell” to the environment. The game engine can also
modify Odor Source attributes at runtime, e.g., changing the odor
strength over time, or swapping in different scents in response to
a user button press. The designer can also modify Odor Source

attributes at runtime, e.g., changing the odor strength over time or

swapping in different scents in response to a user button press, via

scripted events in the Unity Game Engine. Altogether, the Smell
Composer framework provides a creative palette for designers to
prepare virtual scenes imbued with odors.

The Odor Source interface allows the entry of the relative peak
concentrations of odorant molecules (OM), creating the “scent
profile” of the scent. Designers can also use the interface to specify
the relative spread of each constituent OM, as shown in Figure
4, allowing the scent profile to change with distance. To identify
OMs and reliably discern the chemical and physical properties of
OMs as defined in Section 3.1, the Smell Composer interfaces with
PubChem, an open chemistry database created by the National
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Figure 3: The Smell Engine consists of a Smell Composer, Smell Controller, and Valve Driver. Using the Smell Composer interface, designers
create Odor Sources, which the Smell Mixer uses to calculate an Odor Mix Vector. The Odor Mix Vector is fed into the Smell Controller
to determine an olfactometer hardware configuration. This configuration is then fed into the Valve Driver which actuates an olfactometer to
generate the desired olfactory stimuli for the VR user.

Figure 4: Using the Smell Composer’s Odor Source interface, a
designer can create an odor mixture by specifying constituent OMs,
along with the OMs’ relative peak concentration and relative spread.

Institutes of Health. Using PubChem, the Smell Engine obtains

each requested OMs vapor pressure, molar density, and molecular

weight. Combined with the user-specified liquid volume of each

OM per jar, the Smell Engine then determines each jar’s vapor

concentration by calculating the partial pressure and molarity of

each present OM. By integrating PubChem’s vast library of virtually
identifiable OMs with the Odor Source interface, Smell Engine
equips designers to create and modify virtual odor recipes using a
wide range of olfactory specifications.

The Odor Source’s spread distance and max concentration
parameters allow a designer to specify diffusion properties of
the odor, i.e., when and how much of the odor strength is to
diffuse. Analogous to virtual audio stimuli in a Game Engine,
changing the max concentration and spread of an Odor Source
component is similar to changing the volume and spread of an
Audio Source component. To elongate or shorten the gradual change
of odor strength, designers adjust the spread distance parameter.
If one constituent odorant of an Odor Source’s set of odorants is
more dominant in intensity over others, designers can modify the
max concentrations to reflect this. By adjusting these parameters,
designers can choreograph olfactory stimuli in virtual experiences
such that odor strength becomes adaptive to user proximity. Using
such a composition of odors, the scent of a lemon bowl, for example,
will get stronger as a user approaches the fruit.

Following the audio stimuli analogy, Odor Sources function
similarly to Audio Sources in that they can be dynamically
positioned within the virtual environment, anchored to specific
areas/regions, and assigned to game objects. Should the designer
want an environmental smell for the virtual space with no associated
game object/model, they can create an Odor Source instance fixed
to the camera. If the designer wants an odor source to travel through
the virtual environment, e.g., an NPC with an associated odor, they
can assign an Odor Source instance to the moving game object.

4.2 Runtime for Mixing Odor Recipes at the Virtual Nose
With Odor Sources defined and instantiated at design time, the goal
of the Smell Engine at runtime is to aggregate all Odor Sources into a

Figure 5: Using the set of available odorant concentrations C0,
the Smell Controller determines an optimal flux�x in olfactometer
scheduling that approximates the target Odor Mix Vector with an
achievable Odor Mix Vector�c.

single Odor Mix Vector at the user’s virtual nose, which then is used
to faithfully match the virtual odor composition with a physical odor
composition. Similar to audio stimuli in a game engine, a Smell
Mixer can be thought of as an Audio Listener; the Smell Mixer
receives input from all stimuli sources, then renders the aggregate
stimulus for the user to trigger hardware actuation.

To determine the Odor Mix Vector relative to a user’s position,
the Smell Mixer uses an atmospheric diffusion equation defined by
[21] to spatially present odors in a virtual environment. Through
this equation, we emulate the aggregation of spatially-varying
concentration profiles of the N molecular odorants, which are
indexed by i ∈ {1,N}, as they present themselves through M virtual
odor sources, indexed by j ∈ {1,M}. As the user moves farther from
the odor source, modeled by their distance x j from the odor source,
the concentration profile diminishes through atmospheric diffusion
along a Gaussian relationship with odorant-specific σi dispersion
coefficients. Based on such modeling, the odor synthesis system
aggregates perceived concentration of each odorant as a sum across

all odor sources: mi = ∑ j ci, jex2
j/σ 2

i . Together, these concentrations
form a Odor Mix Vector m of target odorant concentrations. With
this Odor Mix Vector, scents of various programmable objects can
naturally compete and combine before artificial synthesis.

4.3 Controller to synthesize physical OM recipe from
virtual odor mix vector

The Smell Mixer transmits its calculated Odor Mix Vector to
the Smell Controller, a subsystem process for configuring an
olfactometer on-the-fly to delivering dynamically mixed odors.
Given the Odor Mix Vector, the Smell Controller specifies a
scheduled duty cycle of valve states to control odorant exposure
times and Mass Flow Controller (MFC) flow rates to regulate
the airflow volume through the valves. To determine when and
how much of an odorant must be diffused through the system’s
airflow, the Smell Controller calculates the amount of flux needed
to achieve a target concentration using a set of variables that are
representative of the system’s physical components. As shown in
Figure 5, we define C0 as the matrix representing the available set of
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odorant concentrations in each jar,�x as the flux, and�c as the target
concentration. To represent flow rates and valve duty cycles, we
define fA as the flow rate of MFC A, fB as the flow rate of MFC B, i
as the index of a jar, and n as the number of jars. We use wiA and
wiB as the occupancy time in ms of valve i in state A and state B,
respectively. The flux yi going through a jar i can thus be calculated
using the following equation:

yi = fA
wiA

n
∑

k=1
wkA

+ fB
wiB

n
∑

k=1
wkB

(1)

As discussed in Section 3.2, the hardware capabilities of the
olfactometer’s components have various constraints that manifest as
parameter constraints in our optimization function to approximate
the flux. For example, for our specific olfactometer hardware
configuration, we use the following set of constraints: 0.01 cc

min ≤
f B ≤ 10 cc

min ; fA + fB ≤ 1000 cc
min ; 0 s ≤ wiA ≤ 1s; 0s ≤ wiB ≤

1swiB = 0s, if wiA > 0s; wiA = 0s, if wiB > 0s
Because the airflow is divided amongst all active jars, creating

the denominator terms in Equation 1, the optimization is too
computationally intensive to resolve at runtime. Thus, we use an
odor table to precompute solutions for a different flow rate and duty
cycle combinations within the available constraints. The odor table
contains 48 concentration setpoints evenly spaced on a logarithmic
scale ranging from [1 nanomolar, 1 micromolar], eight MFC flow
rate setpoints spanning across three orders of magnitude [0.1 cc/m
to 1000 cc/m], and 18 valve occupancy times, evenly spaced on
logarithmic scale, occupying up to 1 second. Organized as a KD-
Tree, the odor table determines which combinations of olfactometer
flow rates and duty cycles over the OM odorants in the jars that
generate the achievable Odor Mix Vector that approximates the
target Odor Mix Vector from the Smell Mixer, as shown in Figure 5.

4.4 Olfactometer hardware control for odor synthesis
Given the Smell Controller’s scheduled valve duty cycles and
MFC flow rates, the Valve Driver executes the schedule using
multifunction I/O modules provided by National Instruments.
Illustrated in Figure 3, the Smell Controller’s schedule is converted
into digital and analog control signals that are used by the system to
direct the odorants’ vaporized air-flow through a series of tubes that
are connected to the solenoid valves and MFCs, diffused into a nose
mask, and sucked through using a continuously running vacuum.

The Valve Driver interfaces through the NIDAQmx API to issue
multiplexed digital and analog signals that correspond to scheduled
valve states and MFC flow rates. The Valve Driver issues valve
duty cycles as 32-bit digital values; the first 16 bits represent high
states, the lower 16 bits representing low states; zeros represent off
states, while ones represent on states. The Valve Driver formats and
converts issued MFC flow rates as a list of analog voltage values.

5 EVALUATION SETUP

We conducted system tests and user studies to evaluate the
effectiveness of the Smell Engine in delivering olfactory stimuli
of varying odor strengths. For the system tests, we use a photo-
ionization detector (PID) to evaluate the precision in which the
Smell Engine synthesizes odorants at desired concentrations. Our

user studies aim to evaluate how well our system can help determine

a subject’s odor sensitivity levels and how our approach improves

their ability to navigate virtual worlds using olfactory cues. For the

user studies, we recruited a total of 15 subjects (11 male, 4 female)

to participate in the three-part study, contingent on their ability to

perceive all odors presented. Through the user studies, we identify:
1) the user-perceived latency for odor delivery; 2) how coarsely or
finely users can identify different odorant strengths; and 3) how
effectively users can localize virtual odor sources. No user subject

reported any history of a medical condition that reduced their sense

of smell. The study was approved by the university’s IRB and the

subjects were recruited from within the university via email posting.

5.1 Odorant/Scent Selection
For our system tests, we used ethanol because it provides a
strong and consistent PID response, and the kinematics (e.g.,
vapor pressure) of ethanol are similar to our selection of odorants.
Our odorant selection for user studies consisted of Acetophenone,
Carvone, and D-limonene, as safe, readily accessible odorants.
Generally, users reported that Acetophenone smelt sweet like berries,
Carvone smelt like peppermint, and D-limonene smelt like oranges.

Each odorant was prepared manually at different dilutions – 10:1
for Acetophenone, 1:1 for Carvone, and 10:1 for D-limonene – using
light, odorless mineral oil as the solvent. We loaded these odorants
into glass jars attached by PTFE tubing to an aluminum manifold.

6 ODOR SYNTHESIS PRECISION

Using a PID to monitor and measure the gas concentration, we
evaluate the precision with which the Smell Engine synthesizes
odor concentrations. With the PID sensor readings, we compare
the ratio changes in voltage against the ratio changes in specified
concentrations to determine the precision of our system. To validate
system/hardware controllability for odor synthesis, we measured
PID response when changing duty cycles of the solenoid valves
and airflow rate setpoints of the Mass Flow Controllers. To
evaluate the precision, we compare the ratio difference in PID sensor
readings between starting and target concentrations by increasing
the concentration values at a granular level.

6.1 Trial Procedure
Our experimental setup consists of a push-to-connect pneumatic
fitting that connects the odorous air, a vacuum, and the PID septum
into the sealed-off outlet. To ensure reliable PID readings for each
trial we: 1) measure clean air at steady-state as a reference point,
2) wait for PID response to achieve steady-state for each target
concentration or hardware configuration, and 3) measure clean air
again to account for sensor drift. Using this testing process, we
conduct a series of experiments to vary the valve duty cycles and
MFC flow rates to evaluate the relationship from the PID response.

In the first experiment, we evaluate the relationship between
the PID response and valve duty cycle by gradually increasing
the relative valve occupancy time from 0 to 1000 ms in 100 ms
increments. In each trial, we increase the flow rate setpoint by
a fourth of its max capacity (i.e., [2.5 cc, 5.0 cc, 7.5 cc, 10.0
cc] for MFC B and [250 cc, 500 cc, 750 cc, 1000 cc] for MFC
A). The carrier MFC supplements the remaining airflow needed
to meet the constant flow rate target. In the second experiment,
to understand the relationship between MFC setpoints and PID
response, we conducted a series of tests, incrementally increasing
the MFC setpoint with different duty cycle configurations. For the
last experiment, we evaluate the precision of odor synthesis for
six trials. In this experiment, we test 16 different concentrations,
ranging from 1 picomolar to 1 micromolar.

6.2 Results
Shown in Figure 6, our results illustrate a relatively linear
relationship between PID sensor readings and increased valve
occupancy times or increased MFC flow rates. Illustrated with
the subplots in Figure 6, we observe that lower flow rates achieve a
high-precision range of 10.0 mV, whereas higher flow rates achieve
a coarse range of 3 V. The ratio difference for PID sensor readings
in a high versus a low state is consistent with the ratio difference
of airflow between MFC A and MFC B, an approximate 3 order of
magnitude difference. With the occupancy subplots in Figure 6, we
observe an approximate 1:4 ratio for a quarter usage of an MFCs
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Figure 6: PID sensor readings for increased valve occupancy times
and MFC flow rates. We adjust MFC A flow rate (top left), MFC B
flow rate (bottom left), relative valve occupancy time in a high flow
rate state (top right), and in a low flow rate state (bottom right).

Figure 7: PID sensor readings across 6 trials for entire concentration
range, demonstrating increasing variation with larger concentrations.

max flow rate compared to the max flow rate of the MFCs. Similarly,
for the flow rate subplots in Figure 6, we observe an approximate 1:4
ratio for a quarter valve duty cycle compared to the max valve duty
cycle. As seen with all data points in the subplots, the combination
of increased MFC flow rates and valve duty cycles results in a higher
PID response, presenting a monotonically increasing relationship.

Figure 7 illustrates the PID sensor readings for target
concentrations comprising varied valve duty cycles and MFC flow
rates. From this data, we observe a roughly increasing PID response
with higher concentrations. The observed plateau in PID response is
in accordance with the previous system tests, validating a roughly
linear relationship within the picomolar range.

7 USER STUDY 1: USER-PERCEIVED LATENCY

In this section, we evaluate the user-perceived latency of the Smell
Engine’s odor diffusion capabilities. For this experiment, we diffuse

each odorant at its max concentration, i.e., max flow rate and

valve duty cycle. In addition to measuring the user-perceived odor

diffusion latency, we use this experiment as a screening session to

determine whether a subject can smell the odorants. If a subject does

not have sensitivity to the odorants, then we do not proceed with the

rest of the study. This excluded 5 out of the 15 participants.

7.1 Trial Procedure
For this study, users trigger a clicker to activate olfactory stimuli
and trigger it again when olfactory stimuli are perceived. This
experiment is repeated three times for each odorant, generating
three latency measurements for each odorant. If the subject cannot
perceive the stimuli within 15 seconds for 2 out of 3 trials for any
odorant, we conclude that the subject cannot perceive the stimuli.

Acetophenone
Carvone
d-limonene

Figure 8: User-perceived latency for each odorant. Subjects that
could not perceive the odor are shown as anomalies.

7.2 Results
We find that our users perceived the system-generated odors from
2.5 to 10 seconds after the virtual triggering of the odor, (with two
outliers at 12 and 14 seconds). The variation seemed to be user-
specific, i.e., some users perceived odors faster than other users.
Among our users, the average user-perceived latency of our system’s
odor diffusion capabilities is approximately 5.7 seconds. Despite
having a small sample size, we conducted an ANOVA for multiple
comparisons and found that the influence of odor type on user-
perceived latency was not statistically significant (p > 0.05). With
Figure 8, we observe that some users perceive smells faster than
others. Additionally, we observe that 75% of the user subjects
perceived all diffused instances of the odorants within a 10-second
time frame, depicted in Figure 8. For this study, four subjects
could not perceive at least one of the odorants within the threshold
timeframe; for these subjects, we did not move forward with the rest
of the study. In a future study, we would like to collect additional
demographic info and test more familiar and less familiar smells.

8 USER STUDY 2: JUST-NOTICEABLE-DIFFERENCE
ODORANT CONCENTRATION STRENGTHS

In this study, we aim to understand how effectively our system

can help determine user-sensitivty levels for specific odors by

measuring the user-reported just-noticeable-difference (JND) values

for the olfactory stimuli. As described in Section 3.1, a JND
value quantifies the amount by which a change in stimulus intensity
produces a noticeable variation in the human sensory experience.
This information is invaluable as it helps us better understand
the relationship between olfactory stimulus intensity and user
perception.If our system can generate odor concentrations that are
more granular than the average user perceivable JND values, we
could devise a screening system to determine a subject’s odor acuity
level. Such a capability would be especially useful in modeling
subject perception of olfactory stimulus over time.

Realizing these opportunities, we investigate user-reported
minimum odor strengths for each odorant and JND concentration
values relative to different baseline concentrations: 0 molar, 10
picomolar, 100 nanomolar. For the second baseline, we start with 10
picomolar because of the limited achievable concentration strengths
of the odorants. For this first study, we hypothesize that a user using
our system can identify a subject’s JND odorant concentration value
relative to the starting concentration value.

8.1 Trial Procedure
To discover JND concentration values, we implemented a staircase
procedure to identify each user’s perceptual threshold. The staircase
procedure is an iterative process that, given a starting stimulus
strength X , will increase/decrease the intensity of the stimulus X by
a delta, y, until a subject specifies a perceived change in stimulus
strength. After the subject perceives the change in stimulus strength
three times, we average the recorded X + y threshold values. The
result is a user-specific JND value such that X±y is not differentiable
from X if y < JND and is differentiable from X if y > JND. We
conducted this study with ten subjects, none of whom reported any
former medical issues that would influence their sense of olfaction.
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For each trial in this study, we present the subject with the baseline
concentration X , along with the increased odor concentration Y , in
a randomized order. We then prompt the participant to confirm
whether they noticed a difference in odorant concentration strength.
At the start of each odor concentration, the subject places the nose
mask and is able to sniff for up to 10 seconds. After concentrations
X and Y are presented to the participant, we prompt them to confirm
whether they noticed a difference in odorant strength. If a user
subject reports no difference in odor strength, Y continues to increase
by a concentration value, h, which is a multiple of the baseline.
Should the user subject report a difference in odor strength, we halve
h and decrease Y by h to determine a more granular JND value.
Once a subject reports a difference three times, we average the Y
concentrations and record the result as the subject’s JND value.

For the first trial, the baseline is no concentration strength (X = 0)
and the starting concentration is 10 picomolar (Y = 10−11). For
the second trial, the baseline is 50 nanomolar (X = 5 · 10−8) and
the starting concentration is 60 nanomolar (Y = 6 ·10−8). For the
third trial, the baseline is 10 picomolar (X = 10−11) and the starting
concentration is approximately 13 picomolar (Y = 1.316−11). This
procedure is repeated for all odorants.

8.2 Results

In support of our hypothesis, the results suggest that the Smell
Engine can help identify a subject’s JND relative to the starting
odorant strength. The box-and-whiskers plots in Figure 9 visualize
the variance in JND results for the different baseline concentrations.
From this data, we found that participants were less sensitive to
changes in strength for D-limonene compared to the other odorants,
suggesting that the Smell Engine can be used to identify how
perceivable an odor is for individual users or groups of users. Figure
9 illustrates how subject JND values changed across trials. Because
some subjects did not perceive a change in strength three times, there
may be no connection between some baseline trials.

Consistent with the Weber-Fechner Law, we observe that the level
at which users perceive a change in stimulus intensity is proportional
to the initial stimulus intensity. For example, the general distribution
of user-reported JND values for the clean air baseline is more
sensitive than at the 10.0 picomolar baseline trial. Figure 9 shows
that user-reported JND values are small when starting with a lower
baseline concentration (e.g., 0, 10−11) and large when starting with
a higher baseline concentration (e.g., 5× 10−8). Generally, we
found that the average JND value for all odorants is within two
orders of magnitude relative to the baseline. In a future study,
we will investigate user-reported JND values with more baseline
concentrations spanning multiple orders of magnitude.

Illustrated in Figure 9, we observe varying distributions of user-
reported JND values for each odor and their respective baseline
concentrations. The variation of user-reported JND values suggests
that our system can produce perceivable odor concentrations that
span multiple orders of magnitude. Additionally, these distributions
demonstrate our system’s ability to generate concentration strengths
that are more granular than the JND values.

From Figure 9, which illustrates how subject JND values vary
relative to the baseline, we found that several participants became
more sensitive to granular changes in odor strength. For example,
when comparing the 10.0 picomolar and clean air baseline trials, we
see occasional instances where user-reported JND values became
finer. This finding motivates the potential of improving a subject’s
ability to identify changes in odorant strength over time. In a future
study, we will observe how exposure to specific odors over time
influences a subject’s sensitivity to the smell.

Interestingly, in some trials where the concentration baseline
was large, subjects could not perceive changes in odorant strength
despite noticing changes in stimulus strength for a lower baseline.
Additionally, in some instances, subjects could not perceive a change

in stimulus strength nor perceive the odorant itself, resulting in a
significant variance of JND values. For example, with Carvone and
D-limonene, the median is approximately 100 picomolar for test
trials involving the picomolar and clean air baselines, suggesting
that the outliers are pulling up the 75th percentile. For test trials that
use the picomolar and clean air baselines, we found the distribution
is larger than the trial that uses 50.0 nanomolar as the baseline.

9 USER STUDY 3: LOCALIZING VIRTUAL ODOR SOURCES

The goal of this study is to determine the extent to which our

system improves a user’s ability to localize odor sources in a virtual

environment compared to existing trigger-based solutions. With this

study, we measure subject accuracy in correct odor localization

using two different odor delivery methods. For our approach, the
dynamic odor delivery method, concentration is a function of
distance, gradually getting more potent with user proximity. By
contrast, with trigger-based odor delivery, the concentration is fixed
and activated when the subject is within a 1.8 meter distance. Since
in our pilot studies, most users would only start registering the
dynamic delivery at 1.8 meter out, the 1.8 meter radius was set so
that both the trigger and dynamic delivery methods would have the
same radius of initial detection. For this study, we hypothesize that
there is a difference in the probability of correctly localizing an odor
source between the odor delivery methods previously described,
such that the dynamic delivery method yields improved accuracy.

9.1 Trial Procedures
The experimental design for this study consists of two trials in which
the subject is prompted to correctly identify all odor sources in the
virtual environment within a five-minute time frame.

Both trials consisted of three rooms that each contained an odor
source, as illustrated in Figure 10. We adopted a within-subject
design in which odor delivery method and odorant type were the
independent variable, and both accuracy and proximity of odor
source selection were the dependent variables. To ensure participants
relied on olfactory cues, we designed the VR environments to consist
of similar layouts, primitive shapes/objects, a limited color palette,
and the same odorants. Because this study is intended to study odor

localization and not odor mixing, each room only contains one odor

source. For each trial, we randomized the location of the odor source.
Subjects reported familiarity with VR and reported no past signs

of olfactory-related diseases or surgeries. Before the study, the
proctor helped the user put on the VR HMD, positioned the nose
mask for comfort, and briefed them on the task. Subjects went
through a tutorial scene that explained navigation and selection
controls. Illustrated in Figure 10, the subjects navigate the virtual
environment to select and specify odorous objects. Throughout
the time of each trial, we recorded the subject’s location, object
interactions/selections, and final selections. The participants
completed a motion sickness questionnaire before and after the study.
Additionally, the participants completed a questionnaire evaluating
the ease of identifying an odor source for each odor delivery method.

9.2 Results
Our main finding is that the dynamic-based odor delivery improved
user accuracy in identifying virtual odor sources compared to the
trigger-based approach. Using an ANOVA for multiple comparisons,
we found that the influence of the odor delivery method on accuracy
and proximal selection was statistically significant (p < 0.05).

Illustrated with Figure 10, we found a 43% average improvement
in accurate odor localization with the dynamic delivery method. The
average accuracy was 13.3% for the trigger-based odor delivery
method, while the dynamic-based odor delivery method was 56.6%.
With trigger-based odor delivery, only 2 of the ten participants were
able to accurately localize an odor source. With dynamic delivery,
all participants correctly localized at least one odor source precisely.
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Figure 9: User-perceived JND results for different relative baselines. Each color represents one of the ten different users.

Figure 10: The subject navigates and sniffs around an environment
that consists of 3 rooms with 9 spheres, one of which is an odor
source (top row). For each user, we count the number of correctly
identified odor sources and average distance to the odor source
selection using two different odor delivery methods (bottom row).

From the charts in Figure 10, we found that participants were
on average within 0.46 meters when attempting to localize the odor
source with the dynamic-based delivery method. Using the trigger-
based delivery method, participants were on average 1.45 meters
off in odor source selection. With the detection threshold of 1.8
meters, we found that compared to the trigger-based odor delivery
method, participants were on average 55% closer in proximity for
odor source localization with dynamic-based odor delivery.

We found correlations between odor-specific JND values, latency
measurements, and accuracy in odor localization with dynamic
delivery. For example, only 20% of users accurately localized
D-limonene, which was associated with the smallest distribution
of JND values and the highest average detection latency. With
Acetophenone and Carvone, which had a more diverse distribution
of JND values, more than 70% of users accurately localized the
smells. Our system can be used to study the ability to detect, identify,
and localize different odors for different user populations.

When reviewing the post-study survey, we found that the rated
ease for localization with the dynamic-based odor delivery method
was higher than the trigger-based odor delivery method. Several
participants remarked that it was easier to localize the odor source
with the dynamic-based odor delivery method. No users reported
signs of motion sickness after both trials of the VR experience.

10 DISCUSSION

The results of our evaluation suggest that the Smell Engine can

generate changes in odor strength that are more granular than

user detection thresholds. Additionally, the Smell Engine can help

identify a subject’s odor sensitivity levels and improve their ability

to localize odor sources within a virtual environment.
Our current system also has limitations. The physical tubing

that connects the olfactometer to the user’s nose restricts physical

movement. Furthermore, the tubing system creates a multi-second
latency due to the odor travel time, a known issue in the community
for olfactometer-based olfactory displays [6, 8, 14, 22]. We also
found that our system’s nose mask does not comfortably support all
nose shapes, causing us to omit one user study. We are investigating
mask-based and mask-less wearable olfactory display designs that
meet a wider range of profiles. We are also currently engaged in

future work to evaluate our system’s ability to mix odors on the fly.

We also envision that we can advance the project by: i) exploring
an olfactory runtime for dynamic, on-the-fly odor mixing [1] using
various forms of odor theory [28], ii) reducing latency in odor
delivery by offloading on-device computation towards new wearable
form factors, and iii) building a malleable software pipeline for odor
diffusion to support various hardware designs (e.g., SAW atomizers,
trigeminal peripherals). These could be facilitated through edge
computing to accelerate software-hardware systems for real-time
computation of physics-based modeling [13] that adaptively respond
to dynamic scenes and user movements [4, 19, 24].

11 CONCLUSIONS AND FUTURE WORK

A Smell Engine capable of computing and delivering olfactory
cues on the fly in a virtual reality environment offers significant
opportunities for a range of olfactory needs. These include
opportunities for odor-oriented training and education, as well
as basic scientific research, e.g., investigating whether humans
identify and classify odors based on statistical co-occurrence of
odorants, or more complex societal questions around cultures around
smell. Virtual augmentation with dynamic, temporally and spatially
delivered olfactory cues offers novel opportunities for examining,
leveraging, and enhancing human olfaction.

To this end, we devise Smell Engine as a software-hardware
framework that integrates olfactory stimuli into virtual environments
such that the odor strengths are spatiotemporally varying based
on user navigation and interaction. We evaluate the Smell Engine
through measurement-based PID system studies and a three-part
user study. From our set of PID tests, we found that the Smell
Engine can generate coarse and granular changes in odor strength.
The results of our user studies (N=10) suggest that the Smell Engine
can help identify whether a user can perceive a specific odor and
help determine what their detection threshold is for the specific
odor. Additionally, we found that our system can improve a user’s
ability to localize artificially generated odor sources within a virtual
environment, as compared to existing trigger-based solutions.
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