
LensCap: Split-Process Framework for Fine-Grained Visual
Privacy Control for Augmented Reality Apps

Jinhan Hu, Andrei Iosifescu, Robert LiKamWa
Meteor Studio, Arizona State University

Tempe, Arizona, USA
jinhanhu,aiosifes,likamwa@asu.edu

ABSTRACT
Augmented Reality (AR) enables smartphone users to interact with
virtual content spatially overlaid on a continuously captured phys-
ical world. Under the current permission enforcement model in
popular operating systems, AR apps are given Internet permission
at installation time, and request camera permission and external
storage write permission at runtime through a user’s approval.
With these permissions granted, any Internet-enabled AR app could
silently collect camera frames and derived visual information for
malicious intent without a user’s awareness. This raises serious
concerns about the disclosure of private user data in their living
environments.

To give users more control over application usage of their cam-
era frames and the information derived from them, we introduce
LensCap, a split-process app design framework, in which the app
is split into a camera-handling visual process and a connectivity-
handling network process. At runtime, LensCap manages secured
communications between split processes, enacting fine-grained data
usage monitoring. LensCap also allows both processes to present
interactive user interfaces. With LensCap, users can decide what
forms of visual data can be transmitted to the network, while still
allowing visual data to be used for AR purposes on device. We pro-
totype LensCap as an Android library and demonstrate its usability
as a plugin in Unreal Engine. Performance evaluation results on
five AR apps confirm that visual privacy can be preserved with an
insignificant latency penalty (< 1.3ms) at 60 FPS.

CCS CONCEPTS
• Security and privacy→ Software security engineering.

KEYWORDS
Augmented Reality Security; Visual Privacy; AR Application Devel-
opment; Split-Process Control; Unreal Engine

1 INTRODUCTION
Augmented Reality (AR) provides a unique interactive experience
of virtual objects overlaying on top of the real-world environment

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8443-8/21/07. . . $15.00
https://doi.org/10.1145/3458864.3467676

enhanced by continuous capturing, processing, and rendering of
visual data through a mobile device. The development of mobile de-
vices and AR frameworks have enabled applications of AR in many
fields, including education, entertainment, medicine, navigation,
shopping, etc., and the future of AR market is expected to continue
its rapid growth [8, 18, 24, 25, 42, 54].

Unfortunately, running AR apps on today’s mobile devices poses
serious privacy concerns, potentially revealing private user infor-
mation in a user’s visual environment to third party entities without
the user’s knowledge. Under the current permission enforcement
model, an AR app is given Internet permission at installation time
and granted camera permission and external storage write permis-
sion at runtime by users. Developers are required to prompt users
with contextual information about why certain permissions are
required, but such permissions are seemingly justified for proper
AR operation; camera frames are necessary to visually integrate
virtual content with a user’s physical environment and Internet
connectivity is needed for cloud-powered services or multiplayer
networking. But once enabled, malicious developers of AR apps
could silently collect camera frames and the information derived
from them for malicious intent, including sending visual data to
a private server, unbeknownst to the user. Without granular con-
trol over what kind of visual data is accessible for local storage or
cloud storage, those collected camera frames could contain very
private data at any given time, ranging from credit cards left on the
table, text recognized from business documents on laptop monitors,
to critical facial identities. How do we protect users from sur-
reptitious collection of visual datawhilemaintaining usable
visual computing for AR applications?

Related solutions attempt to protect visual privacy by processing
camera frames into privacy-preserving visual features and only
give apps access to those features, or a region of the camera frame
defined by the users [2, 28, 41, 46, 47, 50], as shown in Figure 1.
However, this is too restrictive for AR apps, which need the abil-
ity to visually render the entire frame to provide the camera view
as a backdrop for virtual AR overlays. Information flow control
protects sensitive data through dataflow analysis and taint track-
ing [7, 16, 19, 62]. However, most information flow control works
are only effective on data types involving low throughput. Taint-
Droid introduces 500 ms latency capturing still pictures. FlowFence
consumes 100 ms processing 612x816 camera frames for face recog-
nition in security camera apps. This latency overhead is untenable
for AR apps, which must process at 16.6 ms per frame to main-
tain 60 FPS. Compartmentalization attempts to partition an app to
confine private data in a secured hardware or software environ-
ment [14, 15, 23, 26, 45, 61], usually against threats from external
third-party plugins or advertisement libraries.

https://doi.org/10.1145/3458864.3467676

System Process

Legacy Android

App Process

DARKLY System

Camera
Frames

Vision
Library

Developer’s
Code

Network
Access

Visual Process

Camera
Frames

Vision
Library

Developer’s
Visual Code

Network Process

Developer’s
Network Code

Network
Access

Our Solution LensCap (Split-Process Access Control)

App Process

Camera
Frames

Vision
Library

Developer’s
Code

Network
Access App Process

Oculus Quest Camera System

Camera
Frames

Extract Head
& Hand Pose

Developer’s
Code

Network
Access

Figure 1: In legacy Android, AR developers could collect any camera frames and information derived from them without
user awareness. Related solutions in DARKLY [28] and Oculus Quest system [1] only allow developer access to pre-defined
processed visual data, and do not allow rendering of the camera frame. LensCap adopts split-process access control to allow
developer’s code to freely access frames for AR rendering while managing what visual data is accessible to the network.

To address the privacy disclosure of continuous camera usage, we
introduce LensCap, an application development framework built on
top of split-process access control [29], which allows users with fine-
grained and proactive control over the app’s potential transmission
of camera frames and the information derived from them. The idea
of split-process access control is not new; Android OS splits the
mediaserver process into multiple processes to restrict their usage
(after v7.0 [3]). In LensCap, the split-process paradigm is adopted in
the application layer, which is integrated into the app development
flow. An AR application is split into a visual process with full access
to operate on camera frames (but with network permission revoked)
and a network process to maintain Internet communications (but
with camera permission revoked), enforced by extending the legacy
Android permission enforcement. We enable both processes to
present user interfaces through screen-based overlay composition.
Then, data related to camera frames that need to be used in the
network process can only be transmitted out of the visual process
boundary through our trusted LensCap communication services,
wrapped around trusted AR frameworks, and subject to the user’s
monitoring and approval through LensCap data usage notifications
at a fine granularity. If users wish to allow network access to entire
camera frames, e.g., for social media sharing or cloud-powered
vision [22, 57], they can enable such permission. On the other hand,
if a user wants to limit network access to only the camera pose, e.g.,
for multiplayer purposes, the user will be able to do so while still
enjoying a full AR overlay on the device.

Thus, LensCap split-process app development framework en-
ables: (i) AR apps and vision libraries to have expressive access
of camera frames, their processing, and their rendering; (ii) fine-
grained user control of the potential transmission of visual data;
(iii) detailed context provided to users, regarding what data is sent
to the cloud and at what times. We acknowledge that split-process
frameworks may still be vulnerable to security threats through
covert channel and side channel attacks [35, 48], which are beyond
the scope of this paper. However, process-based partitioning of
resources narrows the attack surface and could enable protection
measures, such as permission plugins [45]. Ultimately, LensCap

relies on the operating system to protect the communication chan-
nels and the app’s internal storage to secure visual privacy across
the split-process boundary [6, 10].

We prototype LensCap as an Android library that can work with
standalone Android projects, as well as with Unreal Engine (UE)
projects. In UE, LensCap serves as a plugin, through which a UE
game compilation process will automatically generate and compile
the split-process Android project structure. The communication
channels between split processes in UE are provided to AR devel-
opers as Blueprint-callable and leverage the Android environment
through the Java Native Interface (JNI). The data usage monitor
is implemented as Android notifications, which provides the user
with a rendered status of potential visual data collection.

We evaluate LensCap in five cloud-based AR applications that
require the sharing of different types of image features, including
camera pose, light estimation, point cloud, face region, and the
camera frame. We find that the interactive latency between split
processes and the overhead in app performance is negligible, even
at 60 frames per second. Our user study further validates the perfor-
mance similarity from the user’s perspective and the improvement
in user confidence while using untrusted AR apps.

We make the following contributions:
• We introduce an app development framework that is built
on top of split-process access control, which allows users
to proactively control their visual privacy in multi-user and
cloud-based AR apps at an unprecedented fine granularity.

• We prototype a split-process compilation tool for AR devel-
opers of Android, as well as for Unreal Engine to develop
visual privacy-preserving AR apps.

• We evaluate our system in five cloud-based AR apps that re-
quire the upload of different types of data in the UE-Android
environment. We demonstrate that visual privacy in AR
apps can be controlled by users without sacrificing the per-
formance of their AR experiences.

The rest of this paper is organized as follows: §2 background,
§3 threat and trust model, §4 design, §5 programming model, §6
implementation, §7 evaluation, §8 related works, and §9 discussion.

2 BACKGROUND
In this paper, we study the AR development flow in UE, as well as
the permission control model and security enforcement in Android
OS. They are similar across other game development platforms and
operating systems such as Unity for iOS.

2.1 Mobile AR Development
Powerful real-time 3D creation tools such as Unreal Engine [17]
have gained popularity in creating cutting-edge content in immer-
sive interactive experiences. The basic building block in UE is the
module. Each module exposes itself to other modules through a
public interface. Developers can include a set of modules to real-
ize desired app functionalities. For example, to develop AR apps
relying on the ARCore library, app developers need to declare the
AugmentedRealitymodule and the GoogleARCoreBasemodule in
dependencies. Apart from those standard modules, developers can
create plugins to add per-project code and data to extend runtime
gameplay functionality of the app.

UE supports all popular mobile platforms including Android
and iOS. To build and run UE apps in the Android environment,
UE creates an intermediate Android project based on two work-
flows. First, UE provides all source files that are necessary for the
intermediate Android project to be compiled and run, such as a
GameActivity.java template, on top of which developers can cus-
tomize logic and functionalities. Second, all necessary assets for
developing the UE project such as the level Blueprint are com-
piled into a .so library as the native code. The compiled Android
application interacts with UE features through JNI.

2.2 Permission Control
Android requires apps to define permissions in a signed manifest
file to manage the security of various operations [5]. Permissions
are categorized into different protection levels as normal, signa-
ture, and dangerous, in which dangerous permissions must be
prompt to and further granted by users. Permissions for Internet
(permission.INTERNET), camera (permission.CAMERA), and ex-
ternal storage write (permission.WRITE_EXTERNAL_STORAGE) are
essential to an AR app.

Screen buffer capture (screen reading/recording) is also governed
by Android signature permissions. Android apps can specifically
prompt the user when screen buffer capture is required. Users can
enable this at their own discretion, understanding that everything
on the screen will be accessible by the application, including any
visible camera feeds.

Internet permission is categorized under the normal protection
level. It is automatically granted at installation time by the sys-
tem and users will not be notified that the permission is granted.
Camera permission is essential for protecting user’s visual privacy,
and is therefore categorized under the dangerous protection level.
Users will be notified to grant the camera permission in a prompt
dialog. In Android 11, users are able to grant one-time permission
to application’s camera usage called “Only this time”. However, the
app will still have continuous camera access during that one-time.
Write external storage permission is also categorized under the
dangerous protection level which requires the user approval at
runtime.

2.3 Security Enforcement
In Android, security is enforced through app sandboxing. Each app
runs in a separate sandbox with a unique application identity (UID)
given during installation. Sandboxing ensures each app has its own
process and data storage associated with the UID. App sandboxes
cannot interact with each other and only have limited access to
system services by default. If a certain permission is granted, it
will be reflected in the context of the application package and UID.
Android conducts a permission check if the app sandbox requests
access to specific system services (e.g. camera service) or resources
belonging to other apps.

Sandboxing introduces the need of inter-process communica-
tion (IPC). Android implements Binder IPC as an essential mech-
anism to perform operations between processes, such as passing
messages and requesting system services. Binder IPC provides func-
tionalities to bind to functions and data between different execution
environments. The Binder IPC driver is implemented in the ker-
nel. It exposes basic kernel-understood functions to the application
developers through the IBinder interface at the framework layer de-
fined using the Android Interface Definition Language (AIDL) [4].

3 THREAT AND TRUST MODEL
Threat model We focus on scenarios involving third-party AR
apps that require Internet connectivity. Relying on cloud or edge-
based computing platforms empowers mobile AR apps with ad-
ditional computing power and dynamic access to networked re-
sources, e.g., game state, objectmodels/textures, content updates, etc.
This model also includes collaborative multi-user AR games in
which different AR users could share information such as camera
states, point clouds, and lighting estimations for more accurate
tracking and rendering. However, while they provide useful and
engaging functionality,we assume that all such third-party AR
apps cannot be fully trusted. Privacy leakage through camera
frames could happen at any time during the AR experience, with
apps surreptitiously collecting visual data without user awareness.
The visual data may be full camera frames themselves, derived
semantic information (e.g., text or face identities), or compressed
representations. The data could be immediately transmitted upon
capture or stored locally before sending the data over the network,
e.g., bundled with other data upload.
Trustmodel (i)We assume that operating systems such as Android
and iOS are trusted to perform runtime permission check, hardware
platforms are secured against attacks, and official AR frameworks
such as Google ARCore and Apple ARKit are trusted to operate
on camera frames for AR functionalities. These components are
usually secured through a set of operating systems and hardware
security measures [6, 10]. (ii) We assume that visual data sharing
is valid as long as users are aware of it and specifically grant it.
That is, AR applications could be allowed to share camera frames
or information derived from them with the user’s approval. (iii) We
assume that data downloaded from the Internet or read from the
memory is not tampered with. The protection of AR visual output
is actively discussed in other research works [36, 37, 49].
Challenges (i) The AR experience must be quick to respond to
user movement and interaction; the system solution should not
contribute any visible performance overhead. (ii) Visual details need

Android System Services

Android Application Layer

LensCap Split-Process Access Control

Android Framework Layer

Permission Enforcement

Network Process

Network
Handler

Network Screen

Network
Access

Write External StorageCamera Internet

Visual Process

Visual Screen

Dev
Network

Code

AR
Library

Dev
Visual
Code

Visual
Handler

Secured Visual->Network Channel
Fine-Grained Data Monitoring

Trusted Network->Visual Channel

Figure 2: LensCap in Android. AR library output can go to
developer’s visual code to render on visual screen (green), or
to network code through secured LensCapVisual→Network
channel (orange). The blue arrow shows Network→Visual
dataflow, defined in §4.2.

to be protected without reducing the amount of information that an
AR application requires. (iii) Apps may require Internet connection
to utilize more powerful cloud- and edge-based computing and/or
maintain state on networked resources. (iv) There is a trust gap
to be mitigated between users and AR apps in terms of the data
claimed to be collected and the data actually collected.

4 DESIGN
We propose LensCap, a framework that secures visual privacy in AR
apps through (i) enforced split-process access control, (ii) secured
communication channels for processes to securely exchange data,
(iii) screen-based overlay composition, and (iv) fine-grained data
monitoring. Figure 2 shows LensCap in the Android system.

4.1 Enforced Split-Process Access Control
LensCap requires applications to be split into a visual process and
a network process. Through this process-based partitioning, the
permission enforcement in the operating system can assure that
AR apps isolate visual processing from network access except via
explicit user approval.

The visual process is responsible for processing and rendering
camera frames, and thus is allowed to operate on them directly.
Expressive functional use of the frames and visual data allows devel-
opers to program computer vision and image processing operations
freely, as long as the features derived from those camera frames
do not leave the visual process boundary, except with explicit user
approval.

The network process is not allowed to operate on camera frames
or other visual data, except with explicit user approval. However,
the network process is critical to edge- or cloud-based AR apps
for its capability of providing Internet communications, as well as
writing to the external storage. LensCap sequesters the network
process from direct access to the camera frames by revoking cam-
era permissions, but offers it upload and download access to the
network and write access to external storage.

The permission enforcement, residing inside the Android runtime
framework, verifies that when a process attempts to open the cam-
era, it does not have either the network permission or write external
storage permission granted. LensCap also verifies that when a pro-
cess attempts to write to the external storage, it does not have the
camera permission granted. Violations will throw exceptions to
notify users about potentially malicious behavior.

4.2 Secured Communication Channels between
Split Processes

To securely support a range of operations between the visual pro-
cess and the network process, LensCap governs communication
between the two processes through two data Handlers, one for
each process, which enact two channels: Network→Visual and
Visual→Network.
Network→Visual is implicitly trusted. Thus, the network pro-
cess could send data to the visual process freely, as visual privacy
would still be confined inside the visual process. The protection of
visual rendering is beyond the scope of this work, but studied in
related works [36, 37].
Visual→Networkneeds to be explicitly secured. LensCap scru-
tinizes the data sent from the visual process to the network process
and presents access control and access logs to users. Users should
assume that any data that travels across the Visual→Network chan-
nel are visible to the network. This involves any data that could
possibly be used to invade user’s privacy, ranging from visual de-
tails as small as the camera pose to data as large as the entire camera
frame.

To prevent developers from hiding visual information in com-
puted data, LensCap’s Visual→Network channel can only transmit
specific untainted visual data, including camera frames or direct
outputs from the AR library, e.g., camera pose and face tracking
features. LensCap restricts all other forms of transmission on the
Visual→Network channel. In §4.4, we go into further detail into
how such visual data access is monitored by the system, presented
to the user, and selectively permitted by the user.

4.3 Screen-Based Overlay Composition
The screen-based overlay composition allows developers to expres-
sively create screen-based interactions through the visual process
screen and the network process screen. Both screens include sup-
port for the full array of touch-based user interfaces: buttons, sliders,
swipes, or custom-designed screen-based interactions. LensCap
composes the visual output by overlaying the network process
screen surface over the visual process screen surface.

Figure 3 shows an example in which the tap-hold-rotate behavior
to interact with the virtual object is implemented in the visual
process and rendered in the visual process screen, as it would be
in a legacy app. Meanwhile, an interactive search bar is hosted in
the network process screen, through which the user can search for
different 3D models and download them for rendering.

4.4 Fine-Grained Data Monitoring
LensCapmonitors the usage of visual data with a data usage monitor
and a data usage switch, as shown in Figure 3.

Visual Handler
Data Usage Monitor

Cloud
Storage

/Multiplayer

Network
Access

AR Library

Camera Pose

Face Tracking

Light Estimation

Point Cloud

…

Network Handler
Data Usage Switch

Network ProcessVisual Process User’s View

OFF

OFF

1

OFF

ON

OFF

AR User

Car Model
.FBX

2

4 5

6

3

Time-of-Collection

Figure 3: 1○ A user searches for a car in a search bar presented through the network process screen. 2○ The corresponding car
model is downloaded from the cloud, transmitted to the visual process through LensCap Network→Visual channel, and ren-
dered on the detected AR tracking plane in the visual process. 3○ The user can spatially interact with the virtual 3D car model.
Meanwhile, 4○ point cloud positioning data is shared over the network for shared tracking for a multiplayer AR experience,
subject to 5○ user’s approval secured by LensCap data usage monitor and switch in Visual→Network channel. 6○ Visual data
usage can be reviewed by the user.

The data usage monitor The data usage monitor wraps around
the vision library API for three purposes: (i) it lets app developers
utilize the AR library and the Visual→Network communication
channel; (ii) it checks the user permission and then documentswhen
and how often each monitored function is called; (iii) it ensures
data computed from the trusted vision library and the data sent
through the visual data handler are identical, i.e., untainted.

For (i), LensCap wraps around the AR library, preserving original
usability. The developer’s app invokes the LensCap AR functions
to obtain original AR library function output. The developer’s app
invokes LensCap transmission functions to request the sending of
AR library output or camera frames to the network process. For (ii),
LensCap monitors each wrapper function with a separate permis-
sion label, counter, and timer. LensCap updates the permission label
according to the user’s choice in the data usage switch. Upon visual
data transmission across the Visual→Network channel, LensCap
increments the counter and timer, documenting the time of visual
data access from the network process. For (iii), LensCap acquires a
copy of the data when each monitored wrapper function is invoked
by the app. The visual data is checked for identical comparison
with the copy before transmitted through the Visual→Network
channel. We have found that memory comparison (e.g., memcmp) is
sufficiently performant and hash comparisons are not needed.
The data usage switch We design a data usage switch to present
data usage notifications and logs to users with two considerations.
First, the data usage switch allows users to customize the visual
data they allow to be shared at a fine granularity, i.e., users are able
to specifically disable the Visual→Network communication for
each monitored function to prohibit its output from being passed
out of the visual process boundary. Second, the data usage switch
collects access timing information from the data usage monitor
and presents access charts to users visually. Through this, users
are able to transparently see what visual features are potentially
shared over the network and at what times.

5 PROGRAMMING MODEL
As with other operating system privacy changes, LensCap requires
developers to alter their app development patterns. In LensCap,
developers must partition their applications into the visual and
network processes and manage communications between the pro-
cesses. Here, we describe four template scenarios to illustrate the
programming model with LensCap split-process access control
integrated into an AR development flow, as shown in Figure 4.

LensCap allows developers to consider the “principle of least
privilege” and specify only the necessary level of access control
for each process. In this light, Scenarios 1 and 2 are supported
without any special Visual→Network privilege while still enabling
immersive interactive AR functionality. Meanwhile, Scenario 3 only
requires the user to allow specific visual data, e.g., camera pose, to
be shared across the boundary. Finally, Scenario 4 allows developers
to share camera frames and visual data over the network with the
explicit permission of the user. These scenarios serve as examples
of how applications can be developed in the LensCap environment.
Complex applications can be thought of as combinations of these
scenarios; Figure 3 shows an app that has elements of Scenarios 1
(green), 2 (blue), and 3 (orange). Note that it is developer’s respon-
sibility to take care of the application behavior if the visual data
requested are not permitted by users in scenario 3 and 4.
Scenario 1: AR camera overlays and spatial interactions. De-
velopers can program spatial interactions with the AR scene in
the visual process, e.g., allowing users to place, spin, scale, and
otherwise interact with virtual 3D object content. In this scenario,
the application does not need to request any LensCap permissions,
as all visual data can be contained in the visual process.
Scenario 2: Network requests without visual data needs. De-
velopers can program network requests in the network process.
These requests can be triggered by non-AR on-screen canvas user
interface (UI) elements (buttons, sliders, etc.), by time-based events,
or by other activities that don’t require visual data. Notably, in this

Scenario 3: Network requests with
visual/spatial information

Scenario 1: AR camera overlays and spatial
interactions

Scenario 2: Network requests without visual
data needs

Visual
Process

Network
Process

Visual
Process

Network
Process

Scenario 4: Cloud-based camera frame
sharing

LensCap Data Monitoring LensCap Data Monitoring

AR Library

Visual
Process

Network
Process

Camera Pose
Light Estimate
Point Cloud

Camera Frame

Visual
Process

Network
Process

Figure 4: LensCap protects AR users in apps where outputs
from AR libraries or the entire camera frames are to be sent
to the network.

scenario, LensCap allows network process to influence activities
in the visual process through the unidirectional Network→Visual
channel, e.g., specifying what to render based on button UIs that are
tapped in the network process. Downloaded data can also influence
the spatial rendering, providing object models, data to visualize,
image textures, synchronized game state, etc. As in Scenario 1, the
application does not need to request any LensCap permissions, as
nothing from the visual process needs to interact with the network
process.
Scenario 3: Network requests with visual/spatial informa-
tion. Developers may need to share visual or spatial information
among multiple devices for multiplayer positioning, joint illumina-
tion estimation, or other cloud-based activities. In this case, LensCap
allows developers to request user permission to expose specific AR
library outputs over the Visual→Network channel. For example,
developers can explicitly request the camera pose permission in
order to use AR positioning data inferred in the visual process for
network-based rendering. Similarly, the developer can explicitly
request point cloud permission to enable point cloud sharing for
a shared multiplayer AR rendering experience. This scenario also
facilitates AR-based spatial interactions that trigger network down-
loads, as spatial interactions may be inextricable from both visual
data and network data. Altogether, in this scenario, LensCap only
requires users to enable specific visual data to be shared, without
exposing their entire camera frame and the potential secrets or
embarrassments therein.
Scenario 4: Cloud-based camera frame sharing. In some apps,
users may want to send their entire camera frame to the cloud to
enable livestreaming and social media sharing. Other apps may
require cloud-based processing of camera frames for resource in-
tensive and/or collective vision operation. In these apps, developers
can request users to allow camera frames to pass through in the
LensCap Visual→Network channel. For this scenario, users can be
made aware that their visual privacy might be leaked and selec-
tively disable camera frame access at their discretion. Furthermore,

users can review the LensCap data usage monitor to observe when
camera frames are collected to infer malicious intent.

6 IMPLEMENTATION
In this section, we describe a prototype of LensCap in the Android
ecosystem.We implement developer support in the form of libraries
and automated compilation tools to support both standalone An-
droid development and/or UE development revolving around the
ARCore framework. The implementation is generic to other game
design platforms, e.g., Unity, and other AR frameworks, e.g., Apple
ARKit.

6.1 LensCap Permission Enforcement
We implement the split-process permission enforcement in the An-
droid framework layer (AOSP v9.0.0_r46). The implementation
involves CameraManager in the Camera2 API, ContextWrapper
in the Content API, and the Android namespace defined in the
xmlns:android.

LensCap defines the permission.LENSCAP manifest permission
attribute. Once the app is started, LensCap prompts users to ask
if they “allow the app to use LensCap to monitor and validate
visual information uploaded to the Internet”. If users choose “AL-
LOW”, LensCap permission system will be enforced. Inside the
CameraManager, LensCap verifies if either Internet or write exter-
nal storage permission is granted when camera permission is to
be granted, relying on the PackageManager and AppGlobals for
retrieving the permission of each app based on its UID. Violations
will throw security exceptions to prevent the app from accessing
the camera service. The implementation in ContextWrapper for
protecting the visual privacy from being written to an external stor-
age is similar. The app calls getExternalFilesDir() to inquire
the absolute path of the directory on the primary shared/external
storage device, prompting users to grant write external storage
permission. Here, LensCap verifies if the app also has camera per-
mission granted. Violations will lead to null returned as the path
to invalidate the writing.

6.2 Split-Process for UE Development
Developers can use LensCap to split their app in the standard An-
droid environment. However, to facilitate game engine-based de-
velopment, we implement an automated tool to generate LensCap-
provisioned Android projects from UE projects as part of the com-
pilation process.

We keep the structure of the UE-generated intermediate An-
droid project and reuse its main application module as either the
visual process or the network process. Then (i), for the UE pro-
cess, we automate the insertion of our LensCap APIs into the
main GameActivity.java file by adding function definitions into
the <gameActivityClassAdditions> inside the plugin’s XML file.
These APIs are described in §6.3 for realizing LensCap-verified in-
teractions between the network process and the visual process. In
addition, startup permissions related to write external storage and
Internet communication given to the visual process are automati-
cally removed by modifying the source AndroidManifest.xml file.
(ii), for the non-UE process, we implement it as an individual app
package which has its own workspace, from source code to build

configurations. To automate the generation of non-UE processes,
we provide the source code of the LensCap app package as a third-
party library for UE, together with the two data handlers. During
compilation, the source code is copied to the build directory of the
project and built with the visual process app together. Developers
can implement processing logic inside UE as in the legacy develop-
ment flow and/or utilize the Android process scenario templates
LensCap provided to create complex network-visual interactions.

6.3 Secured Communication Channels
The visual/network data handlers are implemented in both the
Android and the UE environment.
InAndroidThe two data handlers are implemented as two libraries
written in Java and Kotlin. The visual data handler is compiled with
the visual process, whereas the network data handler is compiled
with the network process. Both data handlers have a transmitter
service and a receiver service, for which the transmitter service
of the network data handler binds to the receiver service of the
visual data handler and vice versa. Data transmitted between the
two handlers are shared through Android shared memory (ashmem).
At app level, developers only need to initialize the two handlers in
each process accordingly. Then, they can use the following APIs to
send and receive data securely between split processes.

To receive data, we use Android’s AIDL feature to create an
onData() listener for monitoring and receiving the incoming data.
Then, we expose a Receiver<> interface in the data handler to
be registered with the desired string identifier and the data to be
received as ByteArray.
fun onReceived(id:String , data:ByteArray) {}

Similarly, we expose a Send() interface to transmit the content
through the data handler service as ByteArray associated with the
desired identifier as string.
fun send(id:String , data:ByteArray) {}

In UE Data handler implementation involves: (i) exposing UE Blue-
print callables, (ii) transferring data between the UE-Android bound-
ary and exposing Android Java APIs.

First, the two data handler plugins are implemented in C++ to
expose UE Blueprint callable functions for transmitting validated
AR library outputs. For example, the following LensCap function
can be called in UE Blueprint to collect the camera pose acquired
from the AR library.
UFUNCTION(BlueprintCallable , meta = (DisplayName =

"LensCap_GoogleARCore_Collect CameraPose",

HidePin = "LastPose "))

static void VDH_Send_Camera_Pose(FTransform&

LastPose);

Then, to pass data between the UE-Android boundary, LensCap
plugins implement send and receive APIs through Android JNI.
Currently, we provide support for UE-Android compatible data
types, such as int, float, and bool, which are sent and received
in the form of arrays. The send JNI function checks if the caller has
a valid tag (to differentiate LensCap ARCore wrappers), converts
UE data to JNI types, and is exposed to Android to connect data to
or from UE.

6.4 Screen-Based Overlay Composition
We utilize the Android WindowManager to overlay the network pro-
cess screen on the visual process screen. Although WindowManager
allows the network process to draw its overlay over the visual pro-
cess screen, the network process cannot observe the pixels of the
visual process screen, preserving visual privacy. Adding the screen
overlay requires permission.SYSTEM_ALERT_WINDOW, subject to
user’s approval at runtime. For correct overlay, the layout of the
network process screen matches the visual process screen, such as
width and height.

Inside the network screen overlay, we are able to implement
on-screen touch interfaces to initiate user interactions with the
visual screen. To do so, we override the onTouch(view: View,
motionEvent: MotionEvent) function in the network process to
send touch coordinates to the visual process. If developed in UE,
the visual process translates the received touch coordinates into the
UE coordinate system, which will finally be stacked and processed
in UE’s Android input interface. From the developer’s perspective
(and user’s perspective), the app with the screen-based overlay
operates exactly the same as the legacy application.

6.5 Fine-Grained Data Monitoring
The data usage monitor The monitor is linked to the Android
visual data handler and the UE plugin with the following steps.
First, we manually inspect the vision library API to determine the
functions to be monitored. In general, the goal of an AR frame-
work is to provide functionalities that operate on camera frames
to determine trackables and estimate surroundings. In UE, the
GoogleARCoreFunctionLibrary only contains hundreds lines of
code and 50 functions written in C++, among which we focus on
monitoring functions that (i) operate on camera frames, (ii) have a
return value, (iii) work on a block of memory. After narrowing it
down, only 25 functions need to be wrapped. Overall, the workload
for inspecting the vision library is trivial, even when the vision
library needs to be updated for a newer version iteratively. Note
that not all of these functions may expose user privacy at a serious
level. This presents a future research opportunity to investigate
better UI for data usage monitoring that eases the user’s burden
to grant permissions at runtime, e.g., grouping functions exposing
similar types of data and assign each group a risk level [5].

Second, we write a wrapper around each function being moni-
tored. The wrapper function is statically tagged. Upon invocation,
the LensCap user permission is checked. If the user allows spe-
cific visual feature collection, the monitored function is then called.
Next, this wrapper gets each value from the output, concatenates
them, stores them for a data integrity check, and sends them in the
format of data array, together with the function tag, through the
Visual→Network channel provided by the visual data handler.

Third, based on the tag of the function, we add a property into a
LensCapCounterStruct and a LensCapDateStruct in the visual
data handler accordingly to record how often and when the moni-
tored function is called.

Finally, to check the data integrity before send() in the visual
data handler is called, we directly expose a native function from
the UE binary library to our visual data handler, which sends the
data to be transmitted back to UE and compares with the original

data copy stored. Transmission to the network data handler occurs
only if the data match.
The data usage switchThe switch notifies users about what visual
data is used in the network process and further presents interfaces
for users to allow or disallow the transaction of each visual feature.
The implementation involves a user permission inquiry and ver-
ification mechanism, as well as a notification interface. Figure 3
shows an AR app [20] with the data usage switch notifications
shown in settings (in the middle). In this example, the data usage
switch allows users to disable the Visual→Network transmission
of camera pose, lighting estimation, face tracking, point cloud, and
camera frame, which are the five use cases evaluated in §7.

For permission inquiry and verification, we implement a class
LensCapPermissionStruct in the visual data handler to store
boolean values for each type of output from AR library, as well as
a function boolean getPermTag(String tag) to respond permis-
sion inquires. Then, we expose a permission inquiry function to
UE through JNI again to help validate the transmission of a specific
visual feature.

LensCap visual data handler service leverages the Android no-
tification channels to present ON/OFF switches for users to se-
lectively allow/disallow the transmission of a monitored visual
feature. An ON indicates that the user approves the corresponding
visual feature to be transmitted to the network process and the
transmission will further be stored in the timer allowing users to
analyze in detail about Time-of-Collection in the form of a bar
chart. On the contrary, when a notification channel is disabled,
values in LensCapPermissionStruct will be updated accordingly
to prevent visual data from being transmitted.

7 EVALUATION
In this section, we demonstrate the performance of our system in
various cloud-based AR apps, comparing legacy single-process app
behavior with split-process LensCap app behavior, along with an
interview-based user study, to ensure that visual privacy can be
preserved without sacrificing app performance or user experience
at runtime.

7.1 Benchmark Applications
To cover popular AR use cases, we build and evaluate five cloud-
based AR apps [20] that share different types of visual AR data
across multiple devices. These apps are developed in UE (v4.24)
and then deployed to Android devices (Google Pixel 4 XL). A local
desktop server serves as a cloud server, storing and passing data
among mobile devices. Uploading and downloading data uses an
OkHttp client implementation [59] with a WiFi connection.

The first app shares the camera pose, containing the estimated
camera location and rotation, which is critical to tracking and ren-
dering. Collaborative AR apps could share camera poses to achieve
shared user viewport geometry, improve camera calibration, or pro-
vide runtime user/object tracking [53]. The second app shares the
lighting estimation, encoding environmental illumination towards
rendering virtual objects realistically. Multiple AR users could share
radiance samples from multiple perspectives to achieve more ac-
curate lighting estimation for more immersive rendering [44]. The
third app shares the AR point cloud, which contains the 3D visual

Figure 5: We evaluate the interactive latency with a combi-
nation of T1 (Touch→Visual), T2 (Visual→Network), T3 (Up-
load&Download), and T4 (Network→Visual).

corner points that are used to track the space. AR apps can share
point clouds among users for shared positioning and/or send it
to the cloud for object detection [13] and/or image-based localiza-
tion [58]. The fourth app shares the face tracking result. Face track-
ing detects and tracks the image regions of faces between camera
frames, sharing these over the network, e.g., for identity verification.
The last app relies on sharing the full frame. In this model, AR apps
offload camera frames to the cloud, e.g., for livestreaming, video
chat, social media, or cloud-/cloudlet-based vision processing.

7.2 Evaluation Metrics
To explore LensCap’s influence on application performance, we
monitor the time interval between consecutive frames Tf (inverse
to the frame rate).Tf is measured by the deltaTime (app time elapsed
between frames) acquired from the Tick() UE Blueprint function,
which is called every frame.

In addition, we measure and compare the interactive latency of
four time intervals, T1 to T4 when running as the legacy single-
process benchmark apps and as LensCap-enabled split-process
benchmark apps. Depicted in Figure 5, the time intervals are defined
as follows:

(1) T1 represents the time elapsed between a user behavior and
a visual rendering event.

(2) T2 represents the time elapsed to transfer data from the
visual process to the network process, which includes several
actions, i.e., visual process to visual data handler, visual data
handler to network data handler, and network data handler
to network process.

(3) T3 represents the roundtrip time elapsed to upload and down-
load data between the network process and the cloud com-
ponent, e.g., sending face detection results to the cloud and
receiving a response.

(4) T4 represents the time elapsed between when the network
process acquires data from the cloud andwhen it is applied to
the visual process, e.g., utilizing light estimation to improve
rendering. (T4 and T2 are similar but reversed.)

All time intervals are measured by calculating the difference
between system timestamps. We synchronize the system clock

10 12 14 16 18 20 22 24
Frame Time in Milliseconds

0.0

0.2

0.4

0.6

0.8

1.0
Camera Pose

LensCap

Benchmark

(a) Tf sharing camera poses.

10 12 14 16 18 20 22 24
Frame Time in Milliseconds

0.0

0.2

0.4

0.6

0.8

1.0
Light Estimation

LensCap

Benchmark

(b) Tf sharing light estimations.

10 12 14 16 18 20 22 24
Frame Time in Milliseconds

0.0

0.2

0.4

0.6

0.8

1.0
Point Cloud

LensCap

Benchmark

(c) Tf sharing point clouds.

10 12 14 16 18 20 22 24
Frame Time in Milliseconds

0.0

0.2

0.4

0.6

0.8

1.0
Face Tracking

LensCap

Benchmark

(d) Tf sharing face regions.

10 20 30 40 50 60
Frame Time in Milliseconds

0.2

0.4

0.6

0.8

1.0
Camera Frame

LensCap

Benchmark

(e) Tf sharing camera frames.

Figure 6: CDFs ofTf for collecting fives different types of visual data in every 10 frames demonstrate no performance overhead
comparing between the LensCap-integrated apps and the legacy apps.

between the cloud server, the Android device, and the UE environ-
ment. For each app, we run the experiment for 2 minutes to acquire
thousands of data samples, during which the data collection is per-
formed roughly every 10 frames, an interval very commonly used in
many keyframe-based continuous mobile vision applications [39].

7.3 Application Performance
We use Tf to compare and analyze the application performance
in each example use case. A comparison of Tf between the bench-
mark and the LensCap-integrated app is shown in Figure 6 and its
averaged value can be found in Table 1.

We first evaluate the app performance in the context of pro-
gramming scenario 3 and 4, in which the network process requests
visual data to be uploaded and downloaded from the cloud. In Fig-
ure 6a, 6b, 6c, and 6d, results show that most Tf is within 16ms to
17ms in both LensCap-integrated and benchmark apps, which indi-
cates a very comparable AR performance that could be maintained
at as high as 60 FPS, no matter for collecting camera poses, light
estimations, point clouds, or face tracking results. In Figure 6e, the
result shows that collecting the entire camera frames incurs latency
overheads in both benchmark and LensCap-integrated apps. How-
ever, the additional latency comes from processing image planes of
camera frames in UE in the visual process. Thus, the overall app
performance is the same comparing between the benchmark and
the LensCap-integrated apps, i.e., data communication between
split processes does not incur noticeable latency overhead. In par-
ticular, in this worst case, the app performance could be maintained
at around 55 FPS, if camera frames are collected every 10 frames.

In addition, we use app 4 to evaluate the app performance for
programming scenario 1, in which the app just detects faces and

draws overlays locally in the visual process, without network inter-
actions. Results show that the average ofTf is 16.8ms in the legacy
app and 16.7ms in the LensCap-integrated app. Furthermore, we
combine app 1, 2, and 3 together into one app to evaluate program-
ming scenario 2, in which the data downloaded from cloud is sent
to the visual process repeatedly in a sequence after clicking an on-
network-screen button. Results also show similar app performance
compared between the legacy app and the LensCap-integrated app
(both have an average of 16.7ms Tf).
SummaryThe result demonstrates that the adoption of split-process
access control does not appear to influence app performance, likely
due to: (i) the computational ability of mobile devices to handle
the operation of an additional process, and (ii) the non-blocking
data sharing between split processes. Visual privacy can thus be
monitored at the process boundary and preserved on the device
subject to user’s decision, without penalizing the app’s performance.
From our experiences in the evaluation, the AR experience is ro-
bust, smooth, and comparable (without noticing any differences)
between LensCap-integrated and benchmark apps.

7.4 Interactive Latency
We use T1, T2, T3, and T4 to compare and analyze the interactive
latency in each example use case. A comparison of their averaged
values across all data samples between the benchmark and the
LensCap-integrated app is also shown in Table 1.
Camera pose Results show that our system introduces an av-
erage of 0.2ms T1 Touch→Visual latency for initiating user in-
teractions, as well as 0.3ms T2 Visual→Network and 0.3ms T4
Network→Visual latency for transmitting tens of bytes of camera
pose data between processes.

Camera Pose Lighting Estimation Point Cloud Face Tracking Camera Frame
Benchmark LensCap Benchmark LensCap Benchmark LensCap Benchmark LensCap Benchmark LensCap

T1 8.9 9.1 8.4 8.7 8.7 8.9 8.7 9.0 8.7 9.0
T2 N/A 0.3 N/A 0.3 N/A 0.3 N/A 0.4 N/A 1.2
T3 99 108 117 121 128 111 124 120 1253 1176
T4 N/A 0.3 N/A 0.4 N/A 0.4 N/A 0.4 N/A 1.3
Tf 16.8 16.8 16.7 16.7 16.8 16.8 16.7 16.7 18.4 18.4

Table 1: Averaged evaluation results for all time intervals in milliseconds (ms). Note that the interactive latency between
processes (T2 and T4) does not apply to benchmark applications.

Lighting estimation Results show that our system introduces
an average of 0.3ms T1 Touch→Visual latency for initiating user
interactions, as well as 0.3ms T2 Visual→Network and 0.4ms T4
Network→Visual latency for transmitting tens of bytes of lighting
estimation data between processes.
Point cloud Results show that our system introduces an average of
0.2ms T1 Touch→Visual latency for initiating user interactions, as
well as 0.3msT2 Visual→Network and 0.4msT4 Network→Visual
latency for transmitting hundreds to thousands of bytes of point
cloud data between processes.
Face tracking Results show that our system introduces an av-
erage of 0.3ms T1 Touch→Visual latency for initiating user in-
teractions, as well as 0.4ms T2 Visual→Network and 0.4ms T4
Network→Visual latency for transmitting hundreds to thousands
bytes of face tracking data between processes.
Full frame Results show that LensCap introduces an average of
0.3msT1 Touch→Visual latency for initiating user interactions, and
1.2msT2 Visual→Network and 1.3msT4 Network→Visual latency
for transmitting megabytes of camera data between processes.
Summary Split-process access control introduces negligible la-
tency in its inter-process communications, as (i) the 0.2ms to 0.3ms
overhead inT1 is all but invisible, compared with the latency needs
for gaming and other interactive touch-based applications; accord-
ing to Jota et al [32], humans cannot differentiate touch latencies
between 1 and 40ms; and (ii) the 0.3ms to 1.3ms latency ofT2 and
T4 caused by the inter-process communication is negligible (without
impairing the app performance), even for transmitting the entire
camera frame, and even for round-trip operations and interactions
across the two processes. On the other hand, cloud communication
latency T3 consumes hundreds of milliseconds (varying based on
the network conditions).

7.5 User Study
Apart from the previous quantitative evaluation, we perform a user
study to observe users’ hands-on experience of LensCap-integrated
AR apps. The user study is approved by our institution’s IRB. We
recruit a total number of 8 undergraduate and graduate students
majoring in engineering to participate in this user study. The user
study serves three purposes:

• We would like to find out whether the legacy apps and the
LensCap-integrated apps have similar performance, from
the user’s perspective.

• Wewant users to freely express privacy concerns while using
AR apps and evaluate whether their concerns are mitigated
by LensCap.

• We invite users to explore and evaluate the LensCap data
usage monitoring UI and brainstorm together with us for a
better UI design.

User study procedure The user study is interview-based, which
contains five activity-interview phases, described as below:

(1) Preparation. In this phase, besides reading the consent form,
we asked the participants several questions to get their back-
ground in AR. For example, we asked them “What AR appli-
cations have you used before?”, “Where do you usually use
them?”, and “How often do you use them?”.

(2) Application performance study. In this phase, we conducted a
blind user study, in which the legacy app and the LensCap-
integrated app were presented to users in a random order.
To make the two versions of apps identical from appearance,
we temporarily disabled the LensCap data monitoring mod-
ule. Participants were given enough time to explore both
apps freely, e.g., putting a virtual car model and interact
with it. Then, we asked them about their overall experience,
including “Do you think both apps perform smoothly? If not,
which app do you prefer?” and “What differences can you
identify between these two apps?”.

(3) Privacy exposure awareness study. In this phase, we let par-
ticipants explore the legacy app again. Then, we asked them
several questions to understand the baseline of user’s trust
in AR apps. These questions included “Imagine that some
malicious app developers want to steal your identity, what
kind of information in your AR experience do you think
they can exploit?”, “What makes you trust or not trust an
AR app?”, and “Do you think the current permission model
can protect your visual privacy?”.

(4) LensCap introduction. In this phase, we educated participants
to be familiar with the LensCap app development framework.
We explained to participants how LensCap splits the app
into two process, how least-privileged split-process access
control is managed, how the network screen is overlaid on
top of the visual screen, and how users are able to control and
visualize the data transactions between process boundaries
at a fine granularity. Then, we answered any questions they
had.

(5) LensCap data usage monitoring UI study. In this phase, we
let participants explore the LensCap-integrated app again.

We evaluated the current LensCap data monitoring UI from
both the usage aspect and the trust improvement aspect. We
also invited participants to help us envision a better UI to
be design in future that balances the usage and the trust. In
particular, we asked participants several questions, includ-
ing “Do you think LensCap can help you trust untrusted AR
apps by allowing you to control what can be collected by the
network?”, “With the LensCap functioning logo rendering
on the top left, do you feel confident (protected) while using
untrusted AR apps even with no data usage notifications
prompted?”, and “What other types of notification or permis-
sion models would you like to be deployed that can further
improve your trust in AR apps?”.

User study observations From the interview responses, we gar-
nered the following observations, validating the ability of LensCap
from the user’s perspective for maintaining app performance while
endowing users with trust in random AR apps:

• All participants are already familiar with AR technology. They
have more or less used AR apps before, in which Pokemon
Go and social media apps such as TikTok and Snapchat are
the most popular ones.

• Smartphone is the main AR portal. Other types of AR devices,
such as wearable glasses had been barely used. Users noted
that a killer app on those devices would be needed to boost
their usage.

• AR would be used everywhere at anytime. Though currently
AR usage is limited by apps, all participants anticipate to
use AR at various places (from home to outside) and some
of them even want to use AR all the time, including walking
in the street.

• Participants cannot differentiate between the legacy app and
the LensCap-integrated app performance-wise. All of them
agree that the two versions of apps run equally smooth.

• Participants want AR to be deployed in a wide range of fields.
Apart from simply putting virtual 3D content on top of the
real world, participants want to see AR in “medical settings,
to revolutionize surgery”, “education, explaining complicated
chemistry concepts by visualizing reactions”, “designing and
decorating”, and “gaming and social interactions”.

• Participants are aware that visual privacy can be exposed in
AR apps. In particular, they are aware that sensitive infor-
mation such as credit cards, faces, photos left around, and
location captured by the camera could be stolen and uti-
lized by malicious AR apps. One participant pointed out that
“anything my camera is looking at, can be used for targeted
advertisements”.

• Participants can trust an AR app only if they are given control
of the visual stream, e.g., “telling the app not to take my
data”, “as long as the visual data stays within the phone”, and
“clarification on what gets sent to the network and when”.
All participants think the legacy Android permission model
is far from satisfying this condition.

• All participants felt that LensCap would improve their confi-
dence while using untrusted AR apps. They already feel safe
when LensCap functioning logo is displayed and even safer

when notification banners prompted for asking their permis-
sions, with one participant “extremely” liking this setting.
Furthermore, all participants think the Time-of-Collection
info provided by LensCap is useful.

8 RELATEDWORK
Previous works tried to protect user’s privacy from various aspects,
including protecting visual data, information flow control, as well
as isolation and compartmentalization.
Protecting visual dataMany previous works attempt to deprive
untrusted vision applications from accessing the whole camera
frame [2, 41, 50]. Jana et al. introduced the Darkly system [28]
to address the threat of data over-collection and aggregation in
untrusted third-party vision applications. In Darkly, camera frames
are turned into opaque references and untrusted vision applications
can only dereference them through trusted library APIs. Similarly,
the Oculus Quest camera system [1] directly prohibits apps from
accessing the passthrough camera. Instead, developers are only able
to utilize camera poses, controller poses, and hand poses. These
types of works might limit some vision apps that do require to
work on objects and features of a camera frame directly and render
the results. In [46] and [47], Raval et al. provided tools to give AR
users finer-granularity control over their camera frames. AR users
are able to define the part of camera frames that can be seen by
untrusted vision applications. However, these tools might restrict
AR experiences because AR applications need to provide the whole
camera frame for virtual object overlay. Lebeck et al. introduced
the Arya platform [37] to address the privacy and security risks in
visual output caused by malicious or buggy untrusted third-party
AR apps. Arya equips a trusted output module together with a set
of output policies monitoring and filtering AR output in between
the output device and the untrusted application. Unlike our threat
model, some works focus on securing AR output [36, 49]; they
could be integrated with LensCap to enable further secured AR
applications, e.g., by implementing security policies in the network
process to protect the screen overlay.
Informationflowcontrol Information flow control provides users
with more control and visibility over how their private data is used
in third-party apps [12, 21, 30, 31, 33, 34, 38, 40, 64, 65]. Enck et
al. introduced TaintDroid [16] to taint, analyze, and track user’s
sensitive information at the granularity of variables, messages be-
tween applications, native methods, and files. TaintDroid is able
to dynamically track those tainted data and identify how they are
impacting other data that might cause data leakage. Arzt et al.
presented a static taint-analysis system FlowDroid [7] to address
data leakage in malicious applications. FlowDroid can model the
complete lifecycle of an Android application and precisely monitor
contexts, flows, fields, and objects with affordable performance over-
head through on-demand alias analysis. Fernandes et al. presented
FlowFence [19] to protect user data in IoT application frameworks.
FlowFence first separates the operations on sensitive data into
quarantined module. Then, it requires app developers to declare
intentions for the dataflow. Otherwise, undeclared dataflows are
prohibited from getting out of the quarantined modules. Wang et
al. proposed LeakDoctor [62], a system that automatically detects
privacy disclosure and determines if those privacy disclosures are

necessary for functionalities of the app. These types of works can-
not be directly applied to protect visual data not only because of
the cost for operating on large amounts of sensory data, but also
due to a lack of tools and methods to tag camera frames based on
intention. However, we anticipate that integrating static analysis
into LensCap would enhance its ability by further pre-screening
any privacy threats possibly injected by malicious app developers
at the split-process boundary.
Isolation and compartmentalization Isolation and compartmen-
talization are adopted in both hardware and software domains to
separate the execution of untrusted code from others [9, 11, 27, 29,
43, 55, 66]. Herbster et al. proposed Privacy Capsules [23] which
also targets on protecting the leakage of user information through
untrusted third-party applications. Privacy Capsules enforces ap-
plications to first execute in the unsealed phase in which the ap-
plication has no access to the sensitive input but full access to the
network resource, and then in the sealed phase in which the appli-
cation gains access to the sensitive input but losing the capability
of network communications. Raval et al. in [45] proposed to isolate
plugins from the application as an individual app. It allows users
to mediate resource requests made by apps which further enables
more flexible authorizations to them. Dawound et al. in [15] also
pointed out the necessity of application compartmentalization to
protect privacy. DroidCap [15], a system that associates each IPC
object with permissions for capability-based access control, could
be integrated with our work for capability-based access control
between split processes. Kilpatrick introduced Privman [61] as a
C library for partitioning applications in UNIX environment to
ease developer’s burden when developing partitioned applications.
In Privman, developers need to separate their applications into a
privilege server process and a main application process, in which
the main application process only has limited privileges. Apart
from software solutions, Intel introduced Software Guard Exten-
sions (SGX) [14] to allow users to define private regions of memory
for secured execution, which further inspired tons of security and
privacy works [52, 56]. However, none of these work explored inte-
grating isolation and compartmentalization into the development
flow of AR applications. Our system is largely inspired by the idea of
app compartmentalization to isolate potentially malicious behavior
from accessing visual data streams.

9 LIMITATIONS AND FUTUREWORK
AR library certification A significant limitation is that LensCap
only provides services for verified third-party library APIs. In this
paper, we demonstrate our system by implementing it around the
Google ARCore library, though the implementation is generic to
other libraries such as Apple’s ARKit. For untrusted vision libraries,
security experts could certify their operations through a scrutiny of
source code. Then, a validated vision library could be signed to grant
flexible access to the data handlers for network communications.
We will explore this aspect in our future work towards a more
comprehensive security solution.
Automatic application partitioning The split-process paradigm
currently requires developers to rethink app logic. However, a
deeper integration of LensCap into AR development frameworks
could enable the compilation process to make decisions of where

functionality moves across the boundary for performance and effi-
ciency, while protecting visual data according to a user’s wishes. An
intelligent solution may even be able to dynamically migrate tasks
between the visual and network processes subject to the contextual
situation to optimize efficient operation. In future works, we could
enable game engine compilers to bring automatic split-process
partitioning to AR app development practices.
Scalability for verifying cloud services The LensCap system
could also be extended to assist in securing visual offloading to
cloud services. For example, we could verify that user data is sent
to a cloud service associated with a verified URL address. Further
verification would require certification that the cloud service only
computes/stores the expected user data but does not send informa-
tion to other untrusted third-party entities. To do so, LensCap could
integrate with other works that protect user data against malicious
cloud services and secure content sharing in multi-user collabo-
rative AR apps [51, 63]. SAFE [60], as an example, equips a set of
modules including an OS, a runtime, and proxy to enforce user
policies in cloud services such that user data can only be released
to another SAFE system or a system allowed by SAFE policies. Our
system could run underneath this type of work as a trusted OS and
app framework to provide strict control over user data that goes to
unverified cloud services, while providing more latitude to trusted
cloud services.
The adoption of LensCap development framework LensCap
is currently implemented in Android and Unreal Engine environ-
ment. We are actively working on extending LensCap to other
platforms such as iOS and game engines like Unity. To further ease
AR developer’s burden, besides automatic application partitioning,
we would like to build a community of support such that developers
can find help and get trained to develop LensCap-adopted, privacy-
protected, and user-trusted AR apps. In addition, we would like to
invite operating system vendors to participate in the development
of LensCap such that verification can be imposed before AR apps
are uploaded to app stores.

10 CONCLUSION
In this paper, we introduce LensCap, a split-process app develop-
ment framework to protect user’s visual privacy in cloud-based
AR apps. LensCap isolates the processing of camera frames into a
distinct visual process, meanwhile maintaining the cloud communi-
cation through another network process, with the data transactions
between split processes monitored and shown to users for approval
at a fine granularity. We prototype LensCap as an Android library
that could be integrated into the AR development flow of Unreal En-
gine as a plugin. We evaluate LensCap in five UE projects developed
for Android platforms. Results collected from the performance eval-
uation together with an interview-based user study demonstrate
that visual privacy could be preserved and user confidence could be
improved with LensCap split-process access control implemented
in untrusted AR apps, without any noticeable performance penalty.
AcknowledgmentWe sincerely thank the anonymous shepherd
for shepherding the final version of this paper and all of the valuable
comments given by the anonymous reviewers.

REFERENCES
[1] Facebook Technologies, LLC. 2021. Mixed Reality Capture. https://developer.

oculus.com/documentation/native/pc/dg-mrc/?locale=en_US. (2021).
[2] Paarijaat Aditya, Rijurekha Sen, Peter Druschel, Seong Joon Oh, Rodrigo Be-

nenson, Mario Fritz, Bernt Schiele, Bobby Bhattacharjee, and Tong Tong Wu.
2016. I-Pic: A Platform for Privacy-Compliant Image Capture. In Proceed-
ings of the 14th Annual International Conference on Mobile Systems, Applica-
tions, and Services (MobiSys ’16). ACM, New York, NY, USA, 235–248. https:
//doi.org/10.1145/2906388.2906412

[3] Android Developer. 2021. Media Framework Hardening. https://source.android.
com/devices/media/framework-hardening. (2021).

[4] Android Developers. 2021. Android Interface Definition Language (AIDL). https:
//developer.android.com/guide/components/aidl. (2021).

[5] Android Developers. 2021. Permissions overview. https://developer.android.com/
guide/topics/permissions/overview. (2021).

[6] Android Developers. 2021. Secure an Android Device. https://source.android.
com/security. (2021).

[7] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
FlowDroid: Precise Context, Flow, Field, Object-Sensitive and Lifecycle-Aware
Taint Analysis for Android Apps. In Proceedings of the 35th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI ’14). As-
sociation for Computing Machinery, New York, NY, USA, 259âĂŞ269. https:
//doi.org/10.1145/2594291.2594299

[8] Gina Ashe. 2017. What Mary MeekerâĂŹs Internet Trends Report Means for the
State of In-Store. https://blog.thirdchannel.com/mind-the-store. (2017).

[9] Michael Backes, Sven Bugiel, Christian Hammer, Oliver Schranz, and Philipp Von
Styp-Rekowsky. 2015. Boxify: Full-Fledged App Sandboxing for Stock Android.
In Proceedings of the 24th USENIX Conference on Security Symposium (SEC’15).
USENIX Association, USA, 691âĂŞ706.

[10] Bingkun Guo. 2014. iOS Security. https://www.cse.wustl.edu/~jain/cse571-
14/ftp/ios_security/index.html. (2014).

[11] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Stephan Heuser, Ahmad-Reza
Sadeghi, and Bhargava Shastry. 2011. Practical and lightweight domain isolation
on Android. Proceedings of the ACM Conference on Computer and Communications
Security (10 2011). https://doi.org/10.1145/2046614.2046624

[12] Supriyo Chakraborty, Chenguang Shen, Kasturi Rangan Raghavan, Yasser
Shoukry, Matt Millar, and Mani Srivastava. 2014. ipShield: A Framework For En-
forcing Context-Aware Privacy. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14). USENIX Association, Seattle, WA, 143–
156. https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/
chakraborty

[13] Jintai Chen, Biwen Lei, Qingyu Song, Haochao Ying, Danny Z. Chen, and Jian
Wu. 2020. A Hierarchical Graph Network for 3D Object Detection on Point
Clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

[14] Victor Costan and Srinivas Devadas. Intel SGX Explained. (????).
[15] Abdallah Dawoud and Sven Bugiel. 2019. DroidCap: OS Support for Capability-

based Permissions in Android. In NDSS Symposium 2019. https://publications.
cispa.saarland/2818/

[16] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N. Sheth. 2010. TaintDroid: An Information-flow
Tracking System for Realtime PrivacyMonitoring on Smartphones. In Proceedings
of the 9th USENIX Conference on Operating Systems Design and Implementation
(OSDI’10). USENIX Association, Berkeley, CA, USA, 393–407. http://dl.acm.org/
citation.cfm?id=1924943.1924971

[17] Epic Games, Inc. 2021. Unreal Engine. https://www.unrealengine.com/en-US/.
(2021).

[18] FACEBOOK. 2021. Introducing Project Aria. https://about.fb.com/realitylabs/
projectaria/. (2021).

[19] Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro
Conti, and Atul Prakash. 2016. FlowFence: Practical Data Protection for Emerg-
ing IoT Application Frameworks. In 25th USENIX Security Symposium (USENIX
Security 16). USENIX Association, Austin, TX, 531–548. https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/fernandes

[20] Google AR. 2021. Google ARCore SDK for Unreal. https://github.com/google-
ar/arcore-unreal-sdk. (2021).

[21] J. Grubert, T. Langlotz, S. Zollmann, and H. Regenbrecht. 2017. Towards Pervasive
Augmented Reality: Context-Awareness in Augmented Reality. IEEE Transactions
on Visualization and Computer Graphics 23, 6 (2017), 1706–1724.

[22] Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan Pillai,
and Mahadev Satyanarayanan. 2014. Towards Wearable Cognitive Assistance.
In Proceedings of the 12th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys ’14). Association for Computing Machinery,
New York, NY, USA, 68âĂŞ81. https://doi.org/10.1145/2594368.2594383

[23] Raul Herbster, Scott DellaTorre, Peter Druschel, and Bobby Bhattacharjee. 2016.
Privacy Capsules: Preventing Information Leaks by Mobile Apps. In Proceedings

of the 14th Annual International Conference on Mobile Systems, Applications, and
Services (MobiSys ’16). ACM, New York, NY, USA, 399–411. https://doi.org/10.
1145/2906388.2906409

[24] Jinhan Hu, Alexander Shearer, Saranya Rajagopalan, and Robert LiKamWa.
2019. Banner: An Image Sensor Reconfiguration Framework for Seamless
Resolution-Based Tradeoffs. In Proceedings of the 17th Annual International
Conference on Mobile Systems, Applications, and Services (MobiSys ’19). Asso-
ciation for Computing Machinery, New York, NY, USA, 236âĂŞ248. https:
//doi.org/10.1145/3307334.3326092

[25] Jinhan Hu, Jianan Yang, Vraj Delhivala, and Robert LiKamWa. 2018. Characteriz-
ing the Reconfiguration Latency of Image Sensor Resolution on Android Devices.
In Proceedings of the 19th International Workshop on Mobile Computing Systems
& Applications (HotMobile ’18). Association for Computing Machinery, New
York, NY, USA, 81âĂŞ86. https://doi.org/10.1145/3177102.3177109

[26] A. âĂĲ. Huang. 2020. Betrusted: Improving Security Through Physical Partition-
ing. IEEE Pervasive Computing 19, 2 (2020), 13–20. https://doi.org/10.1109/MPRV.
2020.2966190

[27] Jie Huang, Oliver Schranz, Sven Bugiel, and Michael Backes. 2017. The ART
of App Compartmentalization: Compiler-Based Library Privilege Separation on
Stock Android. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’17). Association for Computing Machinery,
New York, NY, USA, 1037âĂŞ1049. https://doi.org/10.1145/3133956.3134064

[28] Suman Jana, Arvind Narayanan, and Vitaly Shmatikov. 2013. A Scanner Darkly:
Protecting User Privacy from Perceptual Applications. In Proceedings of the
2013 IEEE Symposium on Security and Privacy (SP ’13). IEEE Computer Society,
Washington, DC, USA, 349–363. https://doi.org/10.1109/SP.2013.31

[29] Jk Jensen, Jinhan Hu, Amir Rahmati, and Robert LiKamWa. 2019. Protecting
Visual Information in Augmented Reality from Malicious Application Develop-
ers (WearSys ’19). Association for Computing Machinery, New York, NY, USA,
23âĂŞ28. https://doi.org/10.1145/3325424.3329659

[30] Limin Jia, Jassim Aljuraidan, Elli Fragkaki, Lujo Bauer, Michael Stroucken,
Kazuhide Fukushima, Shinsaku Kiyomoto, and Yutaka Miyake. 2013. Run-Time
Enforcement of Information-Flow Properties on Android. In Computer Security –
ESORICS 2013, Jason Crampton, Sushil Jajodia, and Keith Mayes (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 775–792.

[31] Haojian Jin, Minyi Liu, Kevan Dodhia, Yuanchun Li, Gaurav Srivastava, Matthew
Fredrikson, Yuvraj Agarwal, and Jason I. Hong. 2018. Why Are They Collecting
My Data? Inferring the Purposes of Network Traffic in Mobile Apps. Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol. 2, 4, Article 173 (Dec. 2018), 27 pages.
https://doi.org/10.1145/3287051

[32] Ricardo Jota, Albert Ng, Paul Dietz, and Daniel Wigdor. 2013. How Fast is Fast
Enough?: A Study of the Effects of Latency in Direct-touch Pointing Tasks. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’13). ACM, New York, NY, USA, 2291–2300. https://doi.org/10.1145/2470654.
2481317

[33] Thivya Kandappu, Archan Misra, Shih-Fen Cheng, Randy Tandriansyah, and
Hoong Chuin Lau. 2018. Obfuscation At-Source: Privacy in Context-Aware
Mobile Crowd-Sourcing. 2, 1, Article 16 (March 2018), 24 pages. https://doi.org/
10.1145/3191748

[34] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans Kaashoek,
Eddie Kohler, and Robert Morris. 2007. Information Flow Control for Standard OS
Abstractions. In Proceedings of Twenty-first ACM SIGOPS Symposium on Operating
Systems Principles (SOSP ’07). ACM, New York, NY, USA, 321–334. https://doi.
org/10.1145/1294261.1294293

[35] Butler W. Lampson. 1973. A Note on the Confinement Problem. Commun. ACM
16, 10 (Oct. 1973), 613âĂŞ615. https://doi.org/10.1145/362375.362389

[36] K. Lebeck, K. Ruth, T. Kohno, and F. Roesner. 2017. Securing Augmented Reality
Output. In 2017 IEEE Symposium on Security and Privacy (SP). 320–337.

[37] K. Lebeck, K. Ruth, T. Kohno, and F. Roesner. 2018. Arya: Operating System
Support for Securely Augmenting Reality. IEEE Security Privacy 16, 1 (January
2018), 44–53. https://doi.org/10.1109/MSP.2018.1331020

[38] S. M. Lehman and C. C. Tan. 2017. PrivacyManager: An access control frame-
work for mobile augmented reality applications. In 2017 IEEE Conference on
Communications and Network Security (CNS). 1–9.

[39] Haomin Liu, Chen Li, Guojun Chen, Guofeng Zhang, Michael Kaess, and Hujun
Bao. 2017. Robust Keyframe-based Dense SLAM with an RGB-D Camera. CoRR
abs/1711.05166 (2017). arXiv:1711.05166 http://arxiv.org/abs/1711.05166

[40] Adwait Nadkarni, Benjamin Andow, William Enck, and Somesh Jha. 2016. Practi-
cal DIFC Enforcement on Android. In 25th USENIX Security Symposium (USENIX
Security 16). USENIX Association, Austin, TX, 1119–1136. https://www.usenix.
org/conference/usenixsecurity16/technical-sessions/presentation/nadkarni

[41] K. Olejnik, I. Dacosta, J. S. Machado, K. Huguenin, M. E. Khan, and J. Hubaux.
2017. SmarPer: Context-Aware and Automatic Runtime-Permissions for Mobile
Devices. In 2017 IEEE Symposium on Security and Privacy (SP). 1058–1076.

[42] James Paine. 2020. 10 Real Use Cases for Augmented Reality: AR is set to have a
big impact on major industries. https://www.inc.com/james-paine/10-real-use-
cases-for-augmented-reality.html. (2020).

https://developer.oculus.com/documentation/native/pc/dg-mrc/?locale=en_US
https://developer.oculus.com/documentation/native/pc/dg-mrc/?locale=en_US
https://doi.org/10.1145/2906388.2906412
https://doi.org/10.1145/2906388.2906412
https://source.android.com/devices/media/framework-hardening
https://source.android.com/devices/media/framework-hardening
https://developer.android.com/guide/components/aidl
https://developer.android.com/guide/components/aidl
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://source.android.com/security
https://source.android.com/security
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2594291.2594299
https://blog.thirdchannel.com/mind-the-store
https://www.cse.wustl.edu/~jain/cse571-14/ftp/ios_security/index.html
https://www.cse.wustl.edu/~jain/cse571-14/ftp/ios_security/index.html
https://doi.org/10.1145/2046614.2046624
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/chakraborty
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/chakraborty
https://publications.cispa.saarland/2818/
https://publications.cispa.saarland/2818/
http://dl.acm.org/citation.cfm?id=1924943.1924971
http://dl.acm.org/citation.cfm?id=1924943.1924971
https://www.unrealengine.com/en-US/
https://about.fb.com/realitylabs/projectaria/
https://about.fb.com/realitylabs/projectaria/
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/fernandes
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/fernandes
https://github.com/google-ar/arcore-unreal-sdk
https://github.com/google-ar/arcore-unreal-sdk
https://doi.org/10.1145/2594368.2594383
https://doi.org/10.1145/2906388.2906409
https://doi.org/10.1145/2906388.2906409
https://doi.org/10.1145/3307334.3326092
https://doi.org/10.1145/3307334.3326092
https://doi.org/10.1145/3177102.3177109
https://doi.org/10.1109/MPRV.2020.2966190
https://doi.org/10.1109/MPRV.2020.2966190
https://doi.org/10.1145/3133956.3134064
https://doi.org/10.1109/SP.2013.31
https://doi.org/10.1145/3325424.3329659
https://doi.org/10.1145/3287051
https://doi.org/10.1145/2470654.2481317
https://doi.org/10.1145/2470654.2481317
https://doi.org/10.1145/3191748
https://doi.org/10.1145/3191748
https://doi.org/10.1145/1294261.1294293
https://doi.org/10.1145/1294261.1294293
https://doi.org/10.1145/362375.362389
https://doi.org/10.1109/MSP.2018.1331020
https://arxiv.org/abs/1711.05166
http://arxiv.org/abs/1711.05166
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/nadkarni
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/nadkarni
https://www.inc.com/james-paine/10-real-use-cases-for-augmented-reality.html
https://www.inc.com/james-paine/10-real-use-cases-for-augmented-reality.html

[43] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David Wagner. 2012. Ad-
Droid: Privilege Separation for Applications and Advertisers in Android. In
Proceedings of the 7th ACM Symposium on Information, Computer and Communi-
cations Security (ASIACCS ’12). Association for Computing Machinery, New York,
NY, USA, 71âĂŞ72. https://doi.org/10.1145/2414456.2414498

[44] Siddhant Prakash, Alireza Bahremand, Linda D. Nguyen, and Robert LiKamWa.
2019. GLEAM: An Illumination Estimation Framework for Real-time Photore-
alistic Augmented Reality on Mobile Devices. In Proceedings of the 17th Annual
International Conference on Mobile Systems, Applications, and Services (MobiSys
’19). ACM, New York, NY, USA, 142–154. https://doi.org/10.1145/3307334.3326098

[45] Nisarg Raval, Ali Razeen, Ashwin Machanavajjhala, Landon P. Cox, and Andrew
Warfield. 2019. Permissions Plugins as Android Apps (MobiSys ’19). Association
for Computing Machinery, New York, NY, USA, 180âĂŞ192. https://doi.org/10.
1145/3307334.3326095

[46] Nisarg Raval, Animesh Srivastava, Kiron Lebeck, Landon Cox, and Ashwin
Machanavajjhala. 2014. MarkIt: Privacy Markers for Protecting Visual Secrets.
In Proceedings of the 2014 ACM International Joint Conference on Pervasive and
Ubiquitous Computing: Adjunct Publication (UbiComp ’14 Adjunct). ACM, New
York, NY, USA, 1289–1295. https://doi.org/10.1145/2638728.2641707

[47] Nisarg Raval, Animesh Srivastava, Ali Razeen, Kiron Lebeck, Ashwin Machanava-
jjhala, and Lanodn P. Cox. 2016. What You Mark is What Apps See. In Pro-
ceedings of the 14th Annual International Conference on Mobile Systems, Ap-
plications, and Services (MobiSys ’16). ACM, New York, NY, USA, 249–261.
https://doi.org/10.1145/2906388.2906405

[48] Joel Reardon, Álvaro Feal, Primal Wijesekera, Amit Elazari Bar On, Narseo
Vallina-Rodriguez, and Serge Egelman. 2019. 50 Ways to Leak Your Data: An
Exploration of Apps’ Circumvention of the Android Permissions System. In
28th USENIX Security Symposium (USENIX Security 19). USENIX Association,
Santa Clara, CA, 603–620. https://www.usenix.org/conference/usenixsecurity19/
presentation/reardon

[49] Talia Ringer, Dan Grossman, and Franziska Roesner. 2016. AUDACIOUS: User-
Driven Access Control with Unmodified Operating Systems. 204–216. https:
//doi.org/10.1145/2976749.2978344

[50] Franziska Roesner, David Molnar, Alexander Moshchuk, Tadayoshi Kohno, and
Helen J. Wang. 2014. World-Driven Access Control for Continuous Sensing. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’14). ACM, New York, NY, USA, 1169–1181. https://doi.org/10.1145/
2660267.2660319

[51] Kimberly Ruth, Tadayoshi Kohno, and Franziska Roesner. 2019. SecureMulti-User
Content Sharing for Augmented Reality Applications. In 28th USENIX Security
Symposium (USENIX Security 19). USENIX Association, Santa Clara, CA, 141–158.
https://www.usenix.org/conference/usenixsecurity19/presentation/ruth

[52] Jose Rodrigo Sanchez Vicarte, Benjamin Schreiber, Riccardo Paccagnella, and
Christopher W. Fletcher. 2020. Game of Threads: Enabling Asynchronous Poi-
soning Attacks. In Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASP-
LOS ’20). Association for Computing Machinery, New York, NY, USA, 35âĂŞ52.
https://doi.org/10.1145/3373376.3378462

[53] D. Schmalstieg and G. Hesina. 2002. Distributed applications for collaborative
augmented reality. In Proceedings IEEE Virtual Reality 2002. 59–66.

[54] A. Shaikh, L. Nguyen, A. Bahremand, H. Bartolomea, F. Liu, V. Nguyen, D. An-
derson, and R. LiKamWa. 2019. Coordinate: A Spreadsheet-Programmable Aug-
mented Reality Framework for Immersive Map-Based Visualizations. In 2019
IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR).

134–1343. https://doi.org/10.1109/AIVR46125.2019.00028
[55] Shashi Shekhar, Michael Dietz, and Dan S. Wallach. 2012. AdSplit: Sepa-

rating Smartphone Advertising from Applications. In 21st USENIX Security
Symposium (USENIX Security 12). USENIX Association, Bellevue, WA, 553–
567. https://www.usenix.org/conference/usenixsecurity12/technical-sessions/
presentation/shekhar

[56] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang, Yi Xu, Yubin
Xia, and Shoumeng Yan. 2020. Occlum: Secure and Efficient Multitasking Inside
a Single Enclave of Intel SGX. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’20). Association for Computing Machinery, New York, NY,
USA, 955âĂŞ970. https://doi.org/10.1145/3373376.3378469

[57] Pieter Simoens, Yu Xiao, Padmanabhan Pillai, Zhuo Chen, Kiryong Ha, and
Mahadev Satyanarayanan. 2013. Scalable Crowd-Sourcing of Video from Mobile
Devices. In Proceeding of the 11th Annual International Conference on Mobile
Systems, Applications, and Services (MobiSys ’13). Association for Computing
Machinery, New York, NY, USA, 139âĂŞ152. https://doi.org/10.1145/2462456.
2464440

[58] P. Speciale, J. L. SchÃűnberger, S. B. Kang, S. N. Sinha, and M. Pollefeys. 2019.
Privacy Preserving Image-Based Localization. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 5488–5498.

[59] Square, Inc. 2021. OkHttp. https://square.github.io/okhttp/. (2021).
[60] Adriana Szekeres, Irene Zhang, Katelin Bailey, Isaac Ackerman, Haichen Shen,

Franziska Roesner, Dan R. K. Ports, Arvind Krishnamurthy, and Henry M. Levy.
2020. Making Distributed Mobile Applications SAFE: Enforcing User Privacy
Policies on Untrusted Applications with Secure Application Flow Enforcement.
(2020). arXiv:cs.CR/2008.06536

[61] Freenix Track and Douglas Kilpatrick. 2003. Privman: A Library for Partitioning
Applications. (2003).

[62] Xiaolei Wang, Andrea Continella, Yuexiang Yang, Yongzhong He, and Sencun
Zhu. 2019. LeakDoctor: Toward Automatically Diagnosing Privacy Leaks in
Mobile Applications. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3, 1,
Article 28 (March 2019), 25 pages. https://doi.org/10.1145/3314415

[63] Guowen Xu, Hongwei Li, Shengmin Xu, Hao Ren, Yinghui Zhang, Jianfei Sun,
and Robert H. Deng. 2020. Catch You If You Deceive Me: Verifiable and Privacy-
Aware Truth Discovery in Crowdsensing Systems. In Proceedings of the 15th
ACM Asia Conference on Computer and Communications Security (ASIA CCS
’20). Association for Computing Machinery, New York, NY, USA, 178âĂŞ192.
https://doi.org/10.1145/3320269.3384720

[64] Yuanzhong Xu and Emmett Witchel. 2015. Maxoid: Transparently Confin-
ing Mobile Applications with Custom Views of State. In Proceedings of the
Tenth European Conference on Computer Systems (EuroSys ’15). Association
for Computing Machinery, New York, NY, USA, Article 26, 16 pages. https:
//doi.org/10.1145/2741948.2741966

[65] Zhi Xu and Sencun Zhu. 2015. SemaDroid: A Privacy-Aware Sensor Management
Framework for Smartphones. In Proceedings of the 5th ACM Conference on Data
and Application Security and Privacy (CODASPY ’15). Association for Comput-
ing Machinery, New York, NY, USA, 61âĂŞ72. https://doi.org/10.1145/2699026.
2699114

[66] Xiao Zhang, Amit Ahlawat, and Wenliang Du. 2013. AFrame: Isolating Adver-
tisements from Mobile Applications in Android. In Proceedings of the 29th Annual
Computer Security Applications Conference (ACSAC ’13). Association for Comput-
ing Machinery, New York, NY, USA, 9âĂŞ18. https://doi.org/10.1145/2523649.
2523652

https://doi.org/10.1145/2414456.2414498
https://doi.org/10.1145/3307334.3326098
https://doi.org/10.1145/3307334.3326095
https://doi.org/10.1145/3307334.3326095
https://doi.org/10.1145/2638728.2641707
https://doi.org/10.1145/2906388.2906405
https://www.usenix.org/conference/usenixsecurity19/presentation/reardon
https://www.usenix.org/conference/usenixsecurity19/presentation/reardon
https://doi.org/10.1145/2976749.2978344
https://doi.org/10.1145/2976749.2978344
https://doi.org/10.1145/2660267.2660319
https://doi.org/10.1145/2660267.2660319
https://www.usenix.org/conference/usenixsecurity19/presentation/ruth
https://doi.org/10.1145/3373376.3378462
https://doi.org/10.1109/AIVR46125.2019.00028
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/shekhar
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/shekhar
https://doi.org/10.1145/3373376.3378469
https://doi.org/10.1145/2462456.2464440
https://doi.org/10.1145/2462456.2464440
https://square.github.io/okhttp/
https://arxiv.org/abs/cs.CR/2008.06536
https://doi.org/10.1145/3314415
https://doi.org/10.1145/3320269.3384720
https://doi.org/10.1145/2741948.2741966
https://doi.org/10.1145/2741948.2741966
https://doi.org/10.1145/2699026.2699114
https://doi.org/10.1145/2699026.2699114
https://doi.org/10.1145/2523649.2523652
https://doi.org/10.1145/2523649.2523652

	Abstract
	1 Introduction
	2 Background
	2.1 Mobile AR Development
	2.2 Permission Control
	2.3 Security Enforcement

	3 Threat and Trust Model
	4 Design
	4.1 Enforced Split-Process Access Control
	4.2 Secured Communication Channels between Split Processes
	4.3 Screen-Based Overlay Composition
	4.4 Fine-Grained Data Monitoring

	5 Programming Model
	6 Implementation
	6.1 LensCap Permission Enforcement
	6.2 Split-Process for UE Development
	6.3 Secured Communication Channels
	6.4 Screen-Based Overlay Composition
	6.5 Fine-Grained Data Monitoring

	7 Evaluation
	7.1 Benchmark Applications
	7.2 Evaluation Metrics
	7.3 Application Performance
	7.4 Interactive Latency
	7.5 User Study

	8 Related Work
	9 Limitations and Future Work
	10 Conclusion
	References

