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ABSTRACT
Many researchers in academia and industry [4, 8] advocate shifting
processing near the image sensor through near-sensor accelera-
tors to reduce data movement across energy-expensive interfaces.
However, near-sensor processing also heats the sensor, increasing
thermal noise and hot pixels, which degrades image quality. To
understand these implications, we perform an energy and ther-
mal characterization in the context of an augmented reality case
study around visual marker detection. Our characterization results
show that for a near-sensor accelerator consuming 1W of power,
dynamic range drops by 16 dB, image noise increases by 3 times,
and the number of hot pixels multiplies by 16, degrading image
quality. Such degradation impairs the task accuracy of interactive
perceptual applications that require high accuracy. The marker-
detection fails for 12% of frames when degraded by 1minute of 1W
near-sensor power consumption.

To this end, we propose temperature-driven task migration,
a system-level technique that partitions processing between the
thermally-coupled near-sensor accelerator and the thermally-isolated
CPUhost. Leveraging the sensor’s current temperature and application-
driven image fidelity requirements, this technique mitigates task
accuracy issues while providing gains in energy-efficiency. We dis-
cuss challenges pertaining to effective, seamless migration decisions
at runtime, and propose potential solutions.
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(a) Traditional vision pipeline has energy-expensive cam-
era and memory interfaces.

(b) Near-sensor processing greatly reduces data traffic, re-
lieving energy-expensive interfaces.

Figure 1: Traditional and near-sensor vision pipelines
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1 INTRODUCTION
With rapid advances in computer vision, vision-based workloads
are increasingly compute- and memory-intensive. Processing such
workloads on traditional CPU/GPU based systems (Fig. 1a) is energy-
inefficient and slow, due to limited spatial parallelism and energy-
expensive DRAM transactions. This has motivated a significant
trend towards shifting processing nearer to the image sensor to
reduce the overhead of transferring imaging data from the sen-
sor to the application processor. Some works propose streaming
DRAM-less vision accelerators [8], while others propose mixed-
signal processing [2, 15] to reduce the data size of the imaging
output. Advances in 3D stacked fabrication have opened further
possibilities for near-sensor processing with minimal footprint,
integrating pixel arrays, memory, and processing circuits in dif-
ferent layers. The smaller interconnects and fine-grained parallel
processing of stacked architectures raises performance and energy-
efficiency, while maintaining small physical area. Due to these
factors, commercial devices have employed stacked technology
to integrate image signal processing, e.g., demosaicing and white
balance, inside compact sensor modules. Whether stacked or non-
stacked, the envisioned near-sensor processing architecture would
resemble Fig. 1b.

However, near-sensor processing raises sensor temperature, es-
pecially for stacked sensor solutions. This is particularly problem-
atic for image sensors, whose quality degrades at raised temper-
atures. This limitation has blocked the potential expressiveness
and performance of near-sensor accelerator implementations from
coming to fruition. In § 3, we characterize that after 1 minute of
1W of near-sensor power draw, sensor temperature rises by 24 ◦C,
which increases the standard deviation of thermal noise by 3X,

Session: Cameras HotMobile’18, February 12–13, 2018, Tempe, AZ, USA

93

https://doi.org/10.1145/3177102.3177111
https://doi.org/10.1145/3177102.3177111
https://doi.org/10.1145/3177102.3177111


drops dynamic range by 16 dB, and multiples the number of hot
pixels by 16. In addition to degrading user experience, low quality
negatively affects the task accuracy of vision applications. In the
above conditions, our pose estimation study fails to detect markers
in 12% of frames when images are subject to the thermal noise of
near-sensor processing. Under normal noise conditions, i.e., when
processing far from the sensor, the same pose estimation detects
markers on all frames.

To this end, we propose a balance of near-sensor processing
and far-sensor processing through temperature-driven task migra-
tion. The migration will shift processing nearer to the sensor to
promote energy-efficiency by reducing data traffic. As the sensor
heats up, the migration shifts processing far from the sensor to
promote image fidelity by allowing the sensor to cool down. This
strategy will maintain image quality and task accuracy while pro-
viding energy-efficiency gains of near-sensor processing. In § 4, we
discuss system-level challenges towards temperature-driven task
migration.

2 BACKGROUND AND RELATEDWORK
Thermal noise in image sensors Image sensors are susceptible to
thermal issues, as an increase in temperature reduces signal fidelity
of the sensor output due to thermal noise [10]. Thermal noise is
fundamentally present across any carrier of charge. For sensors, the
mean-square thermal noise voltage is characterized as kT/C, i.e.,
proportionally related to temperature and inversely proportional to
capacitance. Image sensors are particularly susceptible to thermal
noise in low light environments, where the image signal is weak,
due to fewer photon arrivals.

Furthermore, the dark current of a photodetector creates another
temperature-dependent source of noise, which doubles with every
7 K rise in temperature [9]. Dark current manifests as “hot pixels" in
the image frame, abnormally bright pixels in otherwise dark scenes.
As disclosed in datasheets, many sensors are designed with 60 ◦C
- 70 ◦C as a hard limit for guaranteed fidelity, but image quality
degrades on approach to the limit.

Task migration for the mobile cloud Due to limited energy
budgets on mobile systems, many works explore offloading the
computation to the cloud. These works are fundamentally different
in terms of application partitioning strategy, offloading decision,
framework mechanisms, i.e., virtual machine cloning and code of-
floading. In Mirror Server [20], the entire application is offloaded
to a virtual machine. In CloneCloud [6], partitioning is done at
a thread-level granularity, based on static program analysis. The
offloading decision is taken dynamically based on application sta-
tus. In MAUI [7], partitioning is done at method-level granularity
and the MAUI profiler and solver dynamically make offloading
decisions for remote-able methods. These techniques inform our
understanding of potential task migration strategies for heteroge-
neous distributed systems.

Thermal-drivenmigration for processorThermalmanagement
techniques for microprocessors aim to quell concerns related to
hardware reliability and cooling cost. Dynamic voltage and fre-
quency scaling trades energy savings for performance. To reduce
performance loss, dynamic thermal management can use trigger,

Figure 2: Sensor steady state temperature increases with
near-sensor processing power. 1 W raises temp. by 24 ◦C for
an ambient temperature of 27 ◦C.

response, and initiation mechanisms [5], hybridized thermal stress-
aware adaptation [18], and stochastic techniques for thermal safety [12].

Many OS and compiler-based thermal-aware task scheduling
techniques also serve to manage temperature through software-
hardware cooperation of thermal-aware priority queues [14], pas-
sive load balancing and active migration techniques [16], and mech-
anisms around task queues [3].

These techniques inspire investigation towards thermal-aware
migration for sensors, augmented by the sensor’s sensitivity to
thermal coupling from near-sensor processing.

3 IMPLICATIONS OF NEAR-SENSOR
PROCESSING

Here we present a characterization to understand the energy and
thermal implications of near-sensor processing. In particular, we ex-
amine the potential effectiveness of near-sensor processing around
a marker-based pose estimation application to understand the rela-
tionship between energy-efficiency, image fidelity, and task accu-
racy.

We have three objectives. First, we investigate the potential
energy-efficiency of near-sensor processing. Second, we identify
image artifacts generated by the heat of near-sensor processing.
Finally, we study how these artifacts affect the task accuracy of an
application.

3.1 Proximity for energy-efficiency
Near-sensor processing increases energy-efficiency by reducing
expensive data movement across memory and camera interfaces.
Here, we discuss these interfaces and their influence on a case study:
visual marker-based pose estimation.

3.1.1 Traditional vision pipelines are energy-inefficient due to
expensive interfaces. There are three main components in an imag-
ing pipeline: image sensors, processing units, and memory. The
physical interfaces between these components consume substantial
power. Transmitter and receiver buffers of high speed interfaces use
power-hungry operational amplifiers, whose power consumption
linearly increases with data rate. Furthermore, to maintain high
speeds without increasing voltage, differential interfaces use com-
plementary signals to reduce the influence of noise, drawing more
power than their single-ended interface counterparts. Altogether,
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(a) Raised noise floors cause the dynamic
range to decrease 2 dB with every 3 ◦C rise
in temperature.

(b) Increased influence of thermally sen-
sitive image noises increases the standard
deviation of an image.

(c) Raised dark current triggers twice as
many hot pixel aberrations with every 6 ◦C
rise in temperature.

Figure 3: Raised temperatures degrade image quality due to thermal noise and hot pixel generation.

this results in energy-expensive high-speed interfaces; common
LVDS interfaces consumes approximately 30 pJ/bit.

As shown in Fig. 1a, an image sensor and application proces-
sor communicate with each other via camera serial interface (CSI)
for frame data and I2C bus for camera control and configuration.
Meanwhile, DRAM and CPU communicate via a DDR interface for
read/write/control operations. In vision applications, e.g., marker-
based pose estimation, these interfaces consume substantial power
dissipation, which we examine using Microsemi’s power estima-
tor [1]. For high precision, the application may need to process
frames at high resolutions when visual markers are small and/or
far from the camera. Streaming at 4K resolution at 60 frames per
second will result in data rates on the order of Gbps.

For the camera interface, we evaluate a common CSI interface
with 1 clock and 4 data lanes; we find that this consumes 135mW of
power. Since I2C is used only for control/configuration, it operates
at low frequency – 400 kHz – and consumes only 12mW of power.
For the DRAM interface, a common DDR3 configuration will use a
width of 32 bits, ECC, and on-die 120 Ω termination. In this con-
figuration, the DDR interface consumes around 600mW of power.
While CSI and DDR interfaces are active throughout the runtime
of the application, the I2C bus stays active just before the start of
the application. Consequently, the camera and memory interfaces
sum up to 835mW of substantial power. Thus, interfaces cause
traditional vision pipelines to be energy expensive, motivating a
pursuit of optimization.

3.1.2 Near-sensor processing reduces the burden of energy-expensive
interfaces. To avoid the burden of energy-expensive interfaces, near-
sensor processing units should process vision workloads. This will
reduce – and in some cases, eliminate – the use of energy-expensive
DDR and CSI interfaces.

Near-sensor processing pipelines architecturally differ from tra-
ditional vision pipelines in that in-sensor memory replaces off-
sensor DRAM. This allows the vision accelerator to operate on
image data before the data crosses the off-sensor interface. The
accelerator could be fixed-function hardware or a general-purpose
processing unit, as long as it satisfies the computational needs of
the near-sensor processing. With recent advances towards commer-
cial in-sensor accelerators [13], such an architecture is practically
realistic.

The near-sensor processing unit would substantially reduce in-
terface data rate. In the case of marker-based pose estimation ap-
plication, the output from the accelerator would need only be the
translational and rotational estimates of a pose, whose 6 floating
point numbers would occupy 24 bytes of data per frame. For opti-
cal see-through devices, the camera frame itself is not necessary.
For video see-through devices, camera frames can be sent at lower
resolutions and lower frame rates than those used for pose estima-
tion. As opposed to the Gbps burden of camera frame data, which
requires a CSI interface, the reduced data output would allow the
use of the efficient I2C interface for dramatically reduced energy
consumption.

3.2 Proximity degrades task accuracy
While near-sensor processing is energy-efficient, it increases sensor
temperature through thermal coupling. Higher temperatures signif-
icantly degrade image quality, due to thermal noise and hot pixel
generation, impairing the task accuracy of vision applications. Here,
we present a thermal characterization of near-sensor processing.
Specifically, how does...

• ... near-sensor processing affect sensor temperature?
• ... sensor temperature affect image quality?
• ... image quality affect task accuracy?

3.2.1 Proximity generates heat. Any form of processing dissi-
pates power, which creates heat. Due to their small, silent form
factors, mobile devices use passive cooling to dissipate heat through
conduction to the skin of the device. In smartphones, the sensor
and CPU are separated via ribbon cable, which limits thermal cou-
pling; CPU temperature does not substantially influence sensor
temperature. However, the proximity of a near-sensor accelerator
will generate strong thermal coupling of the sensor with accelerator
power.

To characterize this temperature-power relationship, we use
Therminator [19], a compact thermal simulator for smartphone
hardware. The simulator uses a specification file to describe the
device layout, comprising the size and location of different com-
ponents, and a power trace file to profile component power. We
modify the files to place the processor and sensor in close proximity,
separated by 17mm.
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Figure 4: Degradation in image fidelity at higher temp. in-
creases failure rate of marker detection.

Figure 5: Dynamically changing sensor and environment
conditions influence task accuracy. This poses a challenge
to migration decisions.

In this placement, the steady state temperature of sensor linearly
increases with the processing power of the near-sensor accelera-
tor, as shown in Fig. 2. For every 1W of near-sensor processing
power, within 60 seconds, there is a 24 ◦C rise in sensor tempera-
ture. Stacked image sensor configurationswill generate even greater
temperature dependencies.

3.2.2 Heat degrades image fidelity. High temperatures degrade
image quality, due to thermal noise and hot pixels. While denoising
algorithms can remove some of these artifacts, their effectiveness
needs to be weighed against their power consumption and per-
formance overhead. We leave an extensive analysis of denoising
solutions for near-sensor processing as future work. Here, to quan-
tify noise, we perform experiments 1 to capture raw images under
controlled lighting as we heat the sensor to different temperatures.

For our image capture platform, we use the AR0330, a Bayer-
filtered 3.2 Mp image sensor, integrated with Microsemi Smart-
Fusion2 advanced development kit. The solution uses DRAM for
temporary image storage and an FPGA for processing. The FPGA
hosts a Cortex-M3, which we use to configure the image sensor’s
registers, e.g., for 32ms exposure time and 4X analog gain. We
remove the camera lens to reduce temperature-related distortion
in captured images.

We construct a platform to observe how reported pixel values
change with temperature. To control lighting, we vary a pulse
width modulated LED, adjusting its position for uniform sensor
illumination. To control temperature, we use a Hitachi RH650V
heat gun and a FLIR ONE thermal camera to raise and monitor
temperature. We raise sensor temperature to 100 ◦C and capture
frames as the sensor cools down. We cycle the temperature 10 times
per lighting environment.

To generate a baseline “noiseless" image for comparison, we
average 10 frames captured after the sensor settles to an ambient
steady-state temperature of 44 ◦C. Using pixel-wise comparisons
of captured frames against the baseline image, we characterize the
effect of temperature on pixel value. To do this, we first group pixel
locations by color channel and reported baseline pixel value. Then,
for a given temperature, we treat each pixel of each captured frame
as a sample of a distribution, grouped by the baseline pixel value
of its pixel location. This characterization reports three important
image degradations created by high temperatures.

1Data available at https://github.com/kodukulav/research/thermal

Dynamic range reduction: Dynamic range measures a sensor’s
ability to capture dark and bright portions of a scene. As noise
floor increases with temperature, the dynamic range of reported
values shrinks. Our measurements show that high-temperature
pixels report raised values, separated from the baseline value by a
temperature-dependent offset. As this forces pixel values to start
above zero and saturate at lower luminance, the effective range
of reported pixel values shrinks. We measure that dynamic range
drops by 2 dB for every 3 ◦C rise in temperature as shown in Fig. 3a.
Image noise increase: Thermally sensitive noise sources cause
pixels to report deviated values. We quantify this by calculating
the standard deviation of pixel values in our grouped distributions.
Our measurements confirm that noise sharply increases with tem-
perature, as shown in Fig. 3b.
Hot pixel generation: As discussed in the background, hot pixels
appear where dark current is high. These aberrations increase with
temperature, as dark current exponentially increases with temper-
ature. We count abnormally large pixel values in dark images to
measure the rate of hot pixel generation. Our measurements con-
firm that the number of hot pixels doubles for every 6 ◦C rise, as
shown in Fig. 3c.

3.2.3 Degradation in image fidelity impairs task accuracy. Raised
temperatures lead to pixel-level artifacts that degrade image quality,
impairing the task accuracy of vision applications. To study the
consequences of image quality on task accuracy, we insert noise into
images around marker-based pose estimation, implemented around
OpenCV’s tutorial2. The code uses OpenCV calls to extract visual
features and descriptors, to associate image features with reference
template features through Flann-based matching, and estimate the
pose of the camera through a Perspective-n-Point algorithm. This
reports camera pose with respect to a physical marker.

For our characterization, we use our Microsemi imaging setup to
capture images of a 7.5 in. x 10 in. marker from various perspectives.
We then use noise models interpolated from our characterization,
adding noise to captured images to simulate high temperature
captures from the same camera pose. As shown in Fig. 4, at a fixed
distance of 100 cm pointed at the target, the number of marker
detection failures sharply increases with temperature. Thus, to
keep estimation failures below a threshold, sensor temperature
must remain low.
2http://docs.opencv.org/3.2.0/dc/d2c/tutorial_real_time_pose.html
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(a) All stages run on near-sensor accelerator, resulting in no commu-
nication overhead. This thermally strains the sensor.

(b) For thermal relief, we migrate three stages from near-sensor acc.
to far-sensor host, using data transfer overhead.

Figure 6: Two different partition splits

Our measurements indicate: (i) processing far from the sensor is
energy-inefficient, due to power-expensive interfaces, and (ii) pro-
cessing close to the sensor degrades task accuracy due to image
degradation. Thus, near-sensor processing and far-sensor process-
ing schemes create a possibility for energy efficiency and task ac-
curacy tradeoffs.

4 THERMAL-DRIVEN TASK MIGRATION
Our characterization reveals that near-sensor processing and far-
sensor processing offer tradeoffs between energy-efficiency and
image fidelity. This makes a strong case for thermal-driven task mi-
gration: shift workloads towards near-sensor processing for energy-
efficiency and towards far-sensor processing for image fidelity.

Systems can partition workloads by different granularities: by
programs, threads, classes, and methods. An effective granularity
will allow the system to expressively and efficiently migrate tasks.
In vision, as most processing can be represented using a connected
graph [11], it is simplest to partition the task between operational
stages, as in [17]. For example, as illustrated in Fig. 6b, for marker-
based pose estimation, the system can run feature detection and
FLANN stages on the near-sensor processing unit and the remainder
of the stages on the far-sensor host. To allow the system to change
the partition split at runtime, we assume the system architect will
provision for flexible near-sensor operation. Whether the near-
sensor operation consists of fixed-function units or general-purpose
instructions, the system will need to be able to run different streams
of operations on the near-sensor processing unit.

In the remainder of this section, we discuss thermal-driven task
migration challenges related to decision-making and performance
assurance for migrating between partition splits.

4.1 Situationally aware partition decisions
Determining an effective partition split must balance the thermal
asymmetry of the distributed processing units and the costs of
data transaction. For example, partitioning at an early stage grants
thermal relief, but only at the expense of communication cost. On
the other hand, partitioning at the latter stages of the pipeline
ensures less thermal relief for less communication overhead.

To approach this challenge, we draw inspiration from related
works that dynamically partition applications to offload mobile
tasks to remote servers for energy efficiency [6, 7, 17]. Along sim-
ilar lines, a dynamic partitioning of the connected graph could
optimize workload placement for energy-efficiency and/or perfor-
mance while still satisfying sufficient task accuracy. Thus, we plan

to characterize the performance, energy, and communication over-
head of partitioning in the context of processing vision workloads
across near-sensor and far-sensor processing units. Such partition-
ing should also utilize local optimizations, e.g., dynamic voltage-
frequency scaling on the accelerator or host.

As in prior offloading works, we envision a runtime that will
dynamically decide which task stages should be offloaded, driven
by inputs from a task profiler and an optimization solver. Unlike
other migration works, however, partitioning between near- and
far-sensor processing must be guided by several conditions that
affect image quality and task accuracy, as illustrated in Fig. 5. Par-
titioning decisions will directly influence near-sensor processing
activity, which raises sensor temperature over time. However, im-
age quality also depends on the lighting environment; dark scenes
require sensors to use large exposure times and high analog gains,
increasing motion artifacts and noise sensitivity. Given the mo-
bile nature of vision applications, the split decision will need to
continually adapt to continuously changing conditions.

4.2 Seamless task migration
Vision processing can be pipelined to allow different stages to pro-
cess in parallel at high performance. When the system opts to
change the partition split, e.g., from Fig. 6a to Fig. 6b, the migration
will need to shift stages to run on the far-sensor host. This presents
a challenge: how will the system provide the pipeline data of previ-
ous stages to a newly migrated partitioning scheme? Ideally, this
should be seamless; there should be no drop in pipelined processing
performance.

To complete task migration to a different partitioning split, the
system must synchronize computational states between the near-
sensor processing unit and the far-sensor host. This includes any
dependencies generated by previous operational stages. It also in-
cludes the output of the last stage before the partitioning split. In
Fig. 6b, the latter three stages will not be able to run until they
are provided with the output of the previous stages. In our case
study, this constitutes 24 KB, which would take 17ms to transfer
from near-sensor to far-sensor. Thus, we will face the challenge
of mitigating latency as the near-sensor accelerator communicates
data and the far-sensor host fills the pipeline.

Efficient pipeline utilization has been well explored, e.g., in
branch prediction. Along similar lines, to keep pipeline fully occu-
pied, we can speculatively predict thermal emergencies and begin
to fill the pipeline to minimize performance delays.
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Future work: predictive scheduler for migration
We plan to study effective mechanisms towards a scheduler that
uses sensor temperature, environment conditions, and application
fidelity requirements to guide partitioning decisions between near-
sensor and far-sensor processing. For smooth performance, our
scheduler will predict migration points in advance, and use early
communication to hide migration latency. Through this predictive
scheduler, the systemwill implement thermal-driven task migration
to balance energy efficiency and task accuracy for vision workloads.

5 CONCLUSION
Near-sensor processing is the key to energy-efficient imaging and
vision, as evidenced by recent academic and industrial efforts to-
wards stacked image sensors. However, we show that near-sensor
processing degrades vision tasks due to thermal noise, placing
hard limits on the adoption of near-sensor processing. Thus, to
balance efficiency and accuracy, we propose thermal-driven task
migration to dynamically shift tasks between the thermally coupled
near-sensor accelerator and the far-sensor host, based on environ-
mental conditions. We will build on our early work through a
deeper implementation-based study of thermal-driven task migra-
tion mechanisms. We will also pursue a richer investigation into the
broader implications of near-sensor processing on a wider variety
of vision tasks. Thermal-driven task migration will enable a fu-
ture of energy-efficient continuous mobile vision through powerful
near-sensor processing.
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