MoodScope: Sensing mood from smartphone usage patterns

Robert Likamwa
Lin Zhong

Yunxin Liu
Nicholas D. Lane
Mood-Enhanced Apps

- Personal analytics
- Media recommendation
- Social ecosystems
Affective Computing
(Mood and Emotion)

Biometric-based
(Skin conductivity, Temperature, Pulse rate)
Highly temporal
High cost of deployment
Hassle

Audio/Video-based
(AffectAura, EmotionSense)
Captures expressions
Power hungry
Slightly invasive
Can your mobile phone infer your mood?

From already-available, low-power information?*

* No audio/video sensing, no body-instrumentation
MoodScope ∈ Affective Computing

Usage Trace-based
(MoodScope)
Passive, Continuous
How to model mood?

Audio/Video-based
Captures expressions
Power hungry
Slightly invasive

Biometric-based
Very direct, Fine-grained
High cost of deployment
Mood is...

• ... a persistent long-lasting state
 o Lasts hours or days
 o Emotion lasts seconds or minutes

• ... a strong social signal
 o Drives communications
 o Drives interactions
 o Drives activity patterns
Circumplex model (Russell 1980)
How is the user communicating?
What apps is the user using?
\[f(\text{usage}) = \text{mood} \]
iPhone Livelab Logger

- Web history
- Phone call history
- Sms history
- Email history
- Location history
- App usage

Mood Journaling App

User-base
32 users aged between 18 and 29
11 females
Inference

• Detect a mood pattern
• Validate with only 60 days of data
• Wide range of candidate usage data
• Low computational resources
Daily Mood Averages

- Separate pleasure, activeness dimension
- Take the average over a day
Exploring Features

• Communication
 o SMS
 o Email
 o Phone Calls

• To whom?
 o # messages
 o Length/Duration

Consider “Top 10” Histograms

? How many phone calls were made to #1? #2? ... #10?

? How much time was spent on calls to #1? #2? ... #10?
Exploring Features

- Communication
 - SMS
 - Email
 - Phone Calls

- To whom?
 - # messages
 - Length/Duration

- Usage Activity
 - Applications
 - Websites visited
 - Location History

- Which (app/site/location)?
 - # instances
Previous Mood

- Use previous 2 pairs of mood labels
<table>
<thead>
<tr>
<th>Data Type</th>
<th>Histogram by:</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email contacts</td>
<td># Messages</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td># Characters</td>
<td>10</td>
</tr>
<tr>
<td>SMS contacts</td>
<td># Messages</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td># Characters</td>
<td>10</td>
</tr>
<tr>
<td>Phone call contacts</td>
<td># Calls</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Call Duration</td>
<td>10</td>
</tr>
<tr>
<td>Website domains</td>
<td># Visits</td>
<td>10</td>
</tr>
<tr>
<td>Location Clusters</td>
<td># Visits</td>
<td>10</td>
</tr>
<tr>
<td>Apps</td>
<td># App launches</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>App Duration</td>
<td>10</td>
</tr>
<tr>
<td>Categories of Apps</td>
<td># App launches</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>App Duration</td>
<td>12</td>
</tr>
<tr>
<td>Previous Pleasure and Activeness Averages</td>
<td>N/A</td>
<td>4</td>
</tr>
</tbody>
</table>
Model Design

- Multi-Linear Regression
 - Minimize Mean Squared Error
- Leave-One-Out Cross-Validation
- Sequential Forward Feature Selection during training
Sequential Feature Selection

Improvement of model as SFS adds more features

(Each line is a different user)
Sample Prediction
Error distributions

- Error^2 of > 0.25 will misclassify a mood label

93% < 0.25 error^2
vs. Strawman Models

Models using full-knowledge of a user’s data with LOOCV

Model A: Assume User’s Average Mood
73% Accuracy

Model B: Assume User’s Previous Mood
61% Accuracy

MoodScope Training: 93% Accuracy.
Personalized Training

Model Accuracy

Training Days

Incremental personalized model

All-user model accuracy
Personalized/All-user Hybrid Training

- Incremental personalized model
- Hybrid mood model

Model Accuracy vs. Training Days
Resource-friendly Implementation

Phone

- Inferred Mood
- Mood Model
- Current Usage
- Mood Inputs/Usage Logs

Cloud

- Mood Model
- Model Training
- Mood and Usage History
Inferred Mood
MoodScope:

Sensing mood from smartphone usage patterns

• Robustly (93%) detect each dimension of daily mood
 o On personalized models
 o Starts out with 66% on generalized models

• Validate with 32 users x 2 months worth of data

• Simple resource-friendly implementation